Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 647–652
Research Article

Effect of Surgical Treatment on Lipid Peroxidation Parameters and Antioxidant Status in the Serum of Patients with Peripheral Arterial Disease

1Department of General Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland
2Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland
3Department of General and Vascular Surgery, Poznan University of Medical Sciences, ul. Długa 1/2, 61-848 Poznań, Poland
4Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, ul. 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland

Received 27 June 2013; Revised 16 October 2013; Accepted 17 October 2013

Academic Editor: Luisella Bocchio-Chiavetto

Copyright © 2013 Krzysztof Wojciech Strzyżewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The various risk factors for peripheral arterial disease (PAD) are almost identical to those for atherosclerosis and include abnormal levels of lipids or lipoproteins. Lipid peroxidation parameters and total antioxidant capacity in the serum of male patients with PAD before surgery as well as 3–5 days and 7–10 days after surgery were measured. We also compared these parameters with those in a group of patients receiving simvastatin therapy. Concentrations of lipid hydroperoxides (LOOHs) and malondialdehyde, the total antioxidant capacity (assessed by ferric reducing antioxidant power assay), concentration of thiol (-SH) groups, and ceruloplasmin activity were determined spectrophotometrically in PAD patients treated surgically (Group I) or pharmacologically (Group II). The patients before surgical treatment had significantly higher concentrations of malondialdehyde but lower ceruloplasmin activity than those observed in Group II, treated with simvastatin. No significant differences before surgery in ferric reducing antioxidant power or thiol concentrations were found between the two groups. However, in Group I, both ferric reducing antioxidant power and thiol group concentrations decreased 3–5 days postoperatively, and ceruloplasmin activity increased 7–10 days after surgical treatment. The presented results demonstrate diverse oxidative stress responses to surgical treatment and confirm the beneficial effects of statin therapy in PAD.