Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 679–685
http://dx.doi.org/10.1155/2013/783287
Research Article

Is Transforming Growth Factor-β Signaling Activated in Human Hypertrophied Prostate Treated by 5-Alpha Reductase Inhibitor?

1Department of Urology of Medical School and Institute for Clinical Medicine, Chonbuk National University and Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju 561-712, Republic of Korea
2Departments of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and Shanghai Institute of Andrology, Shanghai 200001, China
3Department of Pharmacology of Medical School and Institute for Clinical Medicine, Chonbuk National University and Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju 561-712, Republic of Korea

Received 6 June 2013; Revised 27 September 2013; Accepted 8 October 2013

Academic Editor: Vincent Sapin

Copyright © 2013 Hye Kyung Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. McConnell, R. Bruskewitz, P. Walsh et al., “The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia,” The New England Journal of Medicine, vol. 338, no. 9, pp. 557–563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. C. G. Roehrborn, P. Boyle, J. C. Nickel, K. Hoefner, and G. Andriole, “Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia,” Urology, vol. 60, no. 3, pp. 434–441, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Russell and J. D. Wilson, “Steroid 5α-reductase: two genes/two enzymes,” Annual Review of Biochemistry, vol. 63, pp. 25–61, 1994. View at Google Scholar · View at Scopus
  4. S. Aggarwal, S. Thareja, A. Verma, T. R. Bhardwaj, and M. Kumar, “An overview on 5α-reductase inhibitors,” Steroids, vol. 75, no. 2, pp. 109–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. S. Coffey and P. C. Walsh, “Clinical and experimental studies of benign prostatic hyperplasia,” Urologic Clinics of North America, vol. 17, no. 3, pp. 461–475, 1990. View at Google Scholar · View at Scopus
  6. C. A. Peters and P. C. Walsh, “The effect of nafarelin, acetate, a luteinizing-hormone-releasing hormone agonist, on benign prostatic hyperplasia,” The New England Journal of Medicine, vol. 317, no. 10, pp. 599–604, 1987. View at Google Scholar · View at Scopus
  7. A. I. El-Sakka and A. A. Yassin, “Review: amelioration of penile fibrosis: myth or reality,” Journal of Andrology, vol. 31, no. 4, pp. 324–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Leask and D. J. Abraham, “TGF-β signaling and the fibrotic response,” The FASEB Journal, vol. 18, no. 7, pp. 816–827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Verrecchia and A. Mauviel, “Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation,” Journal of Investigative Dermatology, vol. 118, no. 2, pp. 211–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Massagué, J. Seoane, and D. Wotton, “Smad transcription factors,” Genes and Development, vol. 19, no. 23, pp. 2783–2810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Javelaud and A. Mauviel, “Mammalian transforming growth factor-βs: smad signaling and physio-pathological roles,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 7, pp. 1161–1165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Moustakas, K. Pardali, A. Gaal, and C.-H. Heldin, “Mechanisms of TGF-β signaling in regulation of cell growth and differentiation,” Immunology Letters, vol. 82, no. 1-2, pp. 85–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Huang and C. Lee, “Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-β,” Frontiers in Bioscience, vol. 8, pp. s740–s749, 2003. View at Google Scholar · View at Scopus
  14. T. L. Timme, L. D. Truong, K. M. Slawin, D. Kadmon, S. H. P. Sang Hee Park, and T. C. Thompson, “Mesenchymal-epithelial interactions and transforming growth factor-β1 expression during normal and abnormal prostatic growth,” Microscopy Research and Technique, vol. 30, no. 4, pp. 333–341, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-F. Wu, H.-Z. Sun, X.-D. Qi, and Z.-H. Tu, “Effect of epristeride on the expression of IGF-1 and TGF-β receptors in androgen-induced castrated rat prostate,” Experimental Biology and Medicine, vol. 226, no. 10, pp. 954–960, 2001. View at Google Scholar · View at Scopus
  16. M. Ruiz-Ortega, M. Ruperez, V. Esteban, and J. Egido, “Molecular mechanisms of angiotensin II-induced vascular injury,” Current Hypertension Reports, vol. 5, no. 1, pp. 73–79, 2003. View at Google Scholar · View at Scopus
  17. J. H. Li, X. R. Huang, H.-J. Zhu, R. Johnson, and H. Y. Lan, “Role of TGF-β signaling in extracellular matrix production under high glucose conditions,” Kidney International, vol. 63, no. 6, pp. 2010–2019, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Li, X. R. Huang, H.-J. Zhu et al., “Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease,” The FASEB Journal, vol. 18, no. 1, pp. 176–178, 2004. View at Google Scholar · View at Scopus
  19. N. F. Gonzalez-Cadavid and J. Rajfer, “Mechanisms of disease: new insights into the cellular and molecular pathology of Peyronie's disease,” Nature Clinical Practice Urology, vol. 2, no. 6, pp. 291–297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. I. El-Sakka, H. M. Hassoba, R. J. Pillarisetty, R. Dahiya, and T. F. Lue, “Peyronie's disease is associated with an increase in transforming growth factor-β protein expression,” Journal of Urology, vol. 158, no. 4, pp. 1391–1394, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. J. Bivalacqua, E. K. Diner, T. E. Novak et al., “A rat model of Peyronie's disease associated with a decrease in erectile activity and an increase in inducible nitric oxide synthase protein expression,” Journal of Urology, vol. 163, no. 6, pp. 1992–1998, 2000. View at Google Scholar · View at Scopus
  22. H. H. Davila, T. R. Magee, D. Vernet, J. Rajfer, and N. F. Gonzalez-Cadavid, “Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie's disease,” Biology of Reproduction, vol. 71, no. 5, pp. 1568–1577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Burnett, M. P. Maguire, S. L. Chamness et al., “Characterization and localization of nitric oxide synthase in the human prostate,” Urology, vol. 45, no. 3, pp. 435–439, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Gradini, M. Realacci, A. Ginepri et al., “Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology,” The Journal of Pathology, vol. 189, pp. 224–229, 1999. View at Google Scholar
  25. T. Klotz, W. Bloch, C. Volberg, U. Engelmann, and K. Addicks, “Selective expression of inducible nitric oxide synthase in human prostate carcinoma,” Cancer, vol. 82, pp. 1897–1903, 1998. View at Google Scholar
  26. S. Baltaci, D. Orhan, Ç. Gögüs, K. Türkölmez, Ö. Tulunay, and O. Gögüs, “Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma,” BJU International, vol. 88, no. 1, pp. 100–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. S. Marks, A. W. Partin, F. J. Dorey et al., “Long-term effects of finasteride on prostate tissue composition,” Urology, vol. 53, no. 3, pp. 574–580, 1999. View at Publisher · View at Google Scholar · View at Scopus