Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35 (2013), Issue 6, Pages 933–938
http://dx.doi.org/10.1155/2013/857895
Research Article

EphB4 Tyrosine Kinase Stimulation Inhibits Growth of MDA-MB-231 Breast Cancer Cells in a Dose and Time Dependent Manner

1Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
2Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
3Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
4Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Received 1 August 2013; Revised 3 October 2013; Accepted 20 October 2013

Academic Editor: Yi-Chia Huang

Copyright © 2013 Farnaz Barneh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. EphB4 receptor tyrosine kinase is of diagnostic and therapeutic value due to its overexpression in breast tumors. Dual functions of tumor promotion and suppression have been reported for this receptor based on presence or absence of its ligand. To elucidate such discrepancy, we aimed to determine the effect of time- and dose-dependent stimulation of EphB4 on viability and invasion of breast cancer cells via recombinant ephrinB2-Fc. Methods. Cells were seeded into multiwell plates and were stimulated by various concentrations of preclustered ephrinB2-Fc. Cell viability was measured on days 3 and 6 following treatment using alamar-blue when cells were in different states of confluence. Results. Stimulation of cells with ephrinB2 did not pose any significant effect on cell viability before reaching confluence, while inhibition of cell growth was detected after 6 days when cells were in postconfluent state following a dose-dependent manner. EphrinB2 treatment did not affect tubular formation and invasion on matrigel. Conclusion. This study showed that EphB4 can differentially inhibit cells at post confluent state and that presence of ligand manifests growth-inhibitory properties of EphB4 receptor. It is concluded that growth inhibition has occurred possibly due to long treatment with ligand, a process which leads to receptor downregulation.