Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 2, Pages 105–112
http://dx.doi.org/10.1155/2013/913715
Research Article

Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

1Post-Graduate Program in Nutrition, Federal University of Santa Catarina, Trindade Campus, 88040-900 Florianópolis, SC, Brazil
2Graduate Program in Nutrition Center, Federal University of Santa Catarina, Trindade Campus, 88040-900 Florianópolis, SC, Brazil
3Department of Physiology, Biological Sciences Building, Centro Politécnico Campus, Federal University of Paraná, Avenida Cel Francisco H dos Santos, s/n, 81530-900 Jardim das Américas, PR, Brazil
4Physiological Sciences Department, Biological Sciences Center, Federal University of Santa Catarina, Trindade Campus, 88040-900 Florianópolis, SC, Brazil
5Department of Nutrition and Post-Graduate Program in Nutrition, Federal University of Santa Catarina, Trindade Campus, 88040-900 Florianópolis, SC, Brazil

Received 31 January 2013; Accepted 1 May 2013

Academic Editor: Sudhir Srivastava

Copyright © 2013 Ricardo Fernandes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Factsheet: obesity and overweight,” 2012, http://www.who.int/mediacentre/factsheets/fs311/en/index.html.
  2. S. H. Belle, W. Chapman, A. P. Courcoulas et al., “Relationship of body mass index with demographic and clinical characteristics in the Longitudinal Assessment of Bariatric Surgery (LABS),” Surgery For Obesity and Related Diseases, vol. 4, pp. 474–480, 2008. View at Google Scholar
  3. L. Sjöström, K. Narbro, C. D. Sjöström et al., “Effects of bariatric surgery on mortality in Swedish obese subjects,” The New England Journal of Medicine, vol. 357, no. 8, pp. 741–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Padwal, S. Klarenbach, N. Wiebe et al., “Bariatric surgery: a systematic review and network meta-analysis of randomized trials,” Obesity Reviews, vol. 12, no. 8, pp. 602–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Galic, J. S. Oakhill, and G. R. Steinberg, “Adipose tissue as an endocrine organ,” Molecular and Cellular Endocrinology, vol. 316, no. 2, pp. 129–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. R. Johnson, J. J. Milner, and L. Makowski, “The inflammation highway: metabolism accelerates inflammatory traffic in obesity,” Immunological Reviews, vol. 249, pp. 218–238, 2012. View at Google Scholar
  7. A. C. M. Thiébaut, M. Rotival, E. Gauthier et al., “Correlation between serum phospholipid fatty acids and dietary intakes assessed a few years earlier,” Nutrition and Cancer, vol. 61, no. 4, pp. 500–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Hodson, C. M. Skeaff, and B. A. Fielding, “Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake,” Progress in Lipid Research, vol. 47, no. 5, pp. 348–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Warensjö, M. Öhrvall, and B. Vessby, “Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 2, pp. 128–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Caspar-Bauguil, A. Fioroni, A. Galinier et al., “Pro-inflammatory phospholipid arachidonic acid/eicosapentaenoic acid ratio of dysmetabolic severely obese women,” Obesity Surgery, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Micallef, I. Munro, M. Phang, and M. Garg, “Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity,” British Journal of Nutrition, vol. 102, no. 9, pp. 1370–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Kim, J. Y. Park, O. Y. Kim et al., “Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF Mass spectrometry (UPLC-Q-TOF MS),” Journal of Proteome Research, vol. 9, no. 9, pp. 4368–4375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Poudel-Tandukar, M. Sato, Y. Ejima et al., “Relationship of serum fatty acid composition and desaturase activity to C-reactive protein in Japanese men and women,” Atherosclerosis, vol. 220, no. 2, pp. 520–524, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Klein-Platat, J. Drai, M. Oujaa, J.-L. Schlienger, and C. Simon, “Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1178–1184, 2005. View at Google Scholar · View at Scopus
  15. L. Ferrucci, A. Cherubini, S. Bandinelli et al., “Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 439–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-M. Fernández-Real, M. Broch, J. Vendrell, and W. Ricart, “Insulin resistance, inflammation, and serum fatty acid composition,” Diabetes Care, vol. 26, no. 5, pp. 1362–1368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Petersson, S. Basu, T. Cederholm, and U. Risérus, “Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: longitudinal analyses in middle-aged men,” British Journal of Nutrition, vol. 99, no. 6, pp. 1186–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Petersson, L. Lind, J. Hulthe, A. Elmgren, T. Cederholm, and U. Risérus, “Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population,” Atherosclerosis, vol. 203, no. 1, pp. 298–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. World Medical Association, “Ethical principles for medical research involving human subjects,” Proceedings of the 59th WMA General Assembly, Seoul, Republic of Korea, October 2008, http://www.wma.net/en/30publications/10policies/b3/index.html.
  20. T. B. Ledue, D. L. Weiner, J. D. Sipe, S. E. Poulin, M. F. Collins, and N. Rifai, “Analytical evaluation of particle-enhanced immunonephelometric assays for C-reactive protein, serum amyloid A and mannose-binding protein in human serum,” Annals of Clinical Biochemistry, vol. 35, no. 6, pp. 745–753, 1998. View at Google Scholar · View at Scopus
  21. F. D. Lasky, Z. M. C. Li, and D. D. Shaver, “Evaluation of a bromocresol purple method for the determination of albumin adapted to the DuPont aca discrete clinical analyzer,” Clinical Biochemistry, vol. 18, no. 5, pp. 290–296, 1985. View at Google Scholar · View at Scopus
  22. C. R. Correa, A. Y. O. Angeleli, N. R. Camargo, L. Barbosa, and R. C. Burini, “Comparison of CRP/albumin ratio with prognostic inflammatory nutritional index (PINI),” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 38, pp. 183–190, 2002 (Portuguese). View at Google Scholar
  23. Y. Ingenbleek and Y. A. Carpentier, “A prognostic inflammatory and nutritional index scoring critically ill patients,” International Journal for Vitamin and Nutrition Research, vol. 55, no. 1, pp. 91–101, 1985. View at Google Scholar · View at Scopus
  24. J. Folch, M. Lees, and G. H. S. Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of biological chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  25. T. G. Lohman, A. F. Roche, and R. Martorell, Anthropometric Standardization Reference Manual, Human Kinetics, Champaign, Ill, USA, 1998.
  26. World Health Organization, “Obesity: preventing and managing the global epidemic,” Report of a WHO Consultation on Obesity, Geneva, Switzerland, 1998. View at Google Scholar
  27. Centers for Disease Control and Prevention (CDC), “Cigarette smoking among adults—United States, 1992, and changes in the definition of current cigarette smoking,” Morbidity and Mortality Weekly Report, vol. 43, pp. 342–346, 1994. View at Google Scholar
  28. P. C. Calder, “Mechanisms of action of (n-3) fatty acids,” Journal of Nutrition, vol. 142, no. 3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. P. C. Calder, “Long-chain fatty acids and inflammation,” The Proceedings of the Nutrition Society, vol. 71, pp. 284–289, 2012. View at Google Scholar
  30. R. K. Murumalla, M. K. Gunasekaran, J. K. Padhan et al., “Fatty acids do not pay the toll: effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation,” Lipids in Health and Disease, vol. 11, article 175, 2012. View at Publisher · View at Google Scholar
  31. F. Boesing, E. A. M. Moreira, D. Wilhelm-Filho et al., “Roux-en-Y bypass gastroplasty: markers of oxidative stress 6 months after surgery,” Obesity Surgery, vol. 20, no. 9, pp. 1236–1244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-B. Chen, Y.-C. Lee, K.-H. Ser et al., “Serum C-reactive protein and white blood cell count in morbidly obese surgical patients,” Obesity Surgery, vol. 19, no. 4, pp. 461–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Pardina, R. Ferrer, J. A. Baena-Fustegueras et al., “The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese,” Obesity Surgery, vol. 20, no. 5, pp. 623–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. C. Wee, K. J. Mukamal, A. Huang, R. B. Davis, E. P. McCarthy, and M. A. Mittleman, “Obesity and C-reactive protein levels among white, black, and hispanic US adults,” Obesity, vol. 16, no. 4, pp. 875–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. L. Myers, N. Rifai, R. P. Tracy et al., “CDC/AHA workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice: report from the laboratory science discussion group,” Circulation, vol. 110, no. 25, pp. 545–549, 2004. View at Google Scholar · View at Scopus
  36. C. Schweiger, R. Weiss, E. Berry, and A. Keidar, “Nutritional deficiencies in bariatric surgery candidates,” Obesity Surgery, vol. 20, no. 2, pp. 193–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Ernst, M. Thurnheer, S. M. Schmid, and B. Schultes, “Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery,” Obesity Surgery, vol. 19, no. 1, pp. 66–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Bavaresco, S. Paganini, T. P. Lima et al., “Nutritional course of patients submitted to bariatric surgery,” Obesity Surgery, vol. 20, no. 6, pp. 716–721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. L. Turner, L. Saager, J. Dalton et al., “A nomogram for predicting surgical complications in bariatric surgery patients,” Obesity Surgery, vol. 21, no. 5, pp. 655–662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. S. Lee, J. W. Choi, I. Hwang et al., “Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22174–22185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Anty, M. Dahman, A. Iannelli et al., “Bariatric surgery can correct iron depletion in morbidly obese women: a link with chronic inflammation,” Obesity Surgery, vol. 18, no. 6, pp. 709–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Iannelli, R. Anty, T. Piche et al., “Impact of laparoscopic roux-en-Y gastric bypass on metabolic syndrome, inflammation, and insulin resistance in super versus morbidly obese women,” Obesity Surgery, vol. 19, no. 5, pp. 577–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. J. Cabrera, A. C. Valezi, V. D. A. Delfino, E. L. Lavado, and D. S. Barbosa, “Reduction in plasma levels of inflammatory and oxidative stress indicators after roux-en-Y gastric bypass,” Obesity Surgery, vol. 20, no. 1, pp. 42–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. A. Alfadda, S. Fatma, M. A. Chishti et al., “Orosomucoid serum concentrations and fat depot-specific mRNA and protein expression in humans,” Molecules and Cells, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Hodson, C. M. Skeaff, and B. A. Fielding, “Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake,” Progress in Lipid Research, vol. 47, no. 5, pp. 348–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Liu, M. S. Strable, and J. M. Ntambi, “Stearoyl Coa desaturase 1: role in cellular inflammation and stress,” Advances in Nutrition, vol. 2, pp. 15–22, 2011. View at Google Scholar
  47. I. B. King, R. N. Lemaitre, and M. Kestin, “Effect of a low-fat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: investigation of a biomarker of total fat intake,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 227–236, 2006. View at Google Scholar · View at Scopus
  48. A. Baylin, K. K. Mi, A. Donovan-Palmer et al., “Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma,” American Journal of Epidemiology, vol. 162, no. 4, pp. 373–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Sun, J. Ma, H. Campos, S. E. Hankinson, and F. B. Hu, “Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women,” American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 74–81, 2007. View at Google Scholar · View at Scopus
  50. J. Y. Lee, L. Zhao, H. S. Youn et al., “Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerizes with Toll-like receptor 6 or 1,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 16971–16979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. A. R. Weatherill, J. Y. Lee, L. Zhao, D. G. Lemay, H. S. Youn, and D. H. Hwang, “Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4,” Journal of Immunology, vol. 174, no. 9, pp. 5390–5397, 2005. View at Google Scholar · View at Scopus
  52. C. Erridge and N. J. Samani, “Saturated fatty acids do not directly stimulate toll-like receptor signaling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 11, pp. 1944–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Warensjö, J.-H. Jansson, T. Cederholm et al., “Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study,” American Journal of Clinical Nutrition, vol. 92, no. 1, pp. 194–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Maruyama, M. Yoneyama, N. Suyama et al., “Differences in serum phospholipid fatty acid compositions and estimated desaturase activities between Japanese men with and without metabolic syndrome,” Journal of Atherosclerosis and Thrombosis, vol. 15, no. 6, pp. 306–313, 2008. View at Google Scholar · View at Scopus
  55. H. Wang, L. M. Steffen, B. Vessby et al., “Obesity modifies the relations between serum markers of dairy fats and inflammation and oxidative stress among adolescents,” Obesity, vol. 19, no. 12, pp. 2404–2410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Zhao, S. Joshi-Barve, S. Barve, and L. H. Chen, “Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation,” Journal of the American College of Nutrition, vol. 23, no. 1, pp. 71–78, 2004. View at Google Scholar · View at Scopus
  57. M. Di Nunzio, F. Danesi, and A. Bordoni, “N-3 PUFA as regulators of cardiac gene transcription: a new link between ppar activation and fatty acid composition,” Lipids, vol. 44, no. 12, pp. 1073–1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. P. Simopoulos, “The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases,” Experimental Biology and Medicine, vol. 233, no. 6, pp. 674–688, 2008. View at Publisher · View at Google Scholar · View at Scopus