Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 847–855
http://dx.doi.org/10.1155/2013/923819
Research Article

Evaluation of Molecular Species of Prostate-Specific Antigen Complexed with Immunoglobulin M in Prostate Cancer and Benign Prostatic Hyperplasia

Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Zemun, Serbia

Received 21 August 2013; Revised 4 October 2013; Accepted 5 October 2013

Academic Editor: Ferdinando Mannello

Copyright © 2013 Sanja Goč and Miroslava Janković. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Beneduce, F. Castaldi, M. Marino et al., “Improvement of liver cancer detection with simultaneous assessment of circulating levels of free alpha-fetoprotein (AFP) and AFP-IgM complexes,” International Journal of Biological Markers, vol. 19, no. 2, pp. 155–159, 2004. View at Google Scholar · View at Scopus
  2. L. Beneduce, F. Castaldi, M. Marino et al., “Squamous cell carcinoma antigen-immunoglobulin M complexes as novel biomarkers for hepatocellular carcinoma,” Cancer, vol. 103, no. 12, pp. 2558–2565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Beneduce, T. Prayer-Galetti, A. M. G. Giustinian et al., “Detection of prostate-specific antigen coupled to immunoglobulin M in prostate cancer patients,” Cancer Detection and Prevention, vol. 31, no. 5, pp. 402–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. W.-M. Zhang, J. Leinonen, N. Kalkkinen, B. Dowell, and U.-H. Stenman, “Purification and characterization of different molecular forms of prostate-specific antigen in human seminal fluid,” Clinical Chemistry, vol. 41, no. 11, pp. 1567–1573, 1995. View at Google Scholar · View at Scopus
  5. A. M. Ward, J. W. F. Catto, and F. C. Hamdy, “Prostate specific antigen: biology, biochemistry and available commercial assays,” Annals of Clinical Biochemistry, vol. 38, no. 6, pp. 633–651, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Á. Végvári, M. Rezeli, C. Sihlbom et al., “Molecular microheterogeneity of prostate specific antigen in seminal fluid by mass spectrometry,” Clinical Biochemistry, vol. 45, no. 4-5, pp. 331–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Jung, B. Brux, M. Lein et al., “Molecular forms of prostate-specific antigen in malignant and benign prostatic tissue: biochemical and diagnostic implications,” Clinical Chemistry, vol. 46, no. 1, pp. 47–54, 2000. View at Google Scholar · View at Scopus
  8. T. Isono, T. Tanaka, S. Kageyama, and T. Yoshiki, “Structural diversity of cancer-related and non-cancer-related prostate-specific antigen,” Clinical Chemistry, vol. 48, no. 12, pp. 2187–2194, 2002. View at Google Scholar · View at Scopus
  9. K. Jung, J. Reiche, A. Boehme et al., “Analysis of subforms of free prostate-specific antigen in serum by two-dimensional gel electrophoresis: potential to improve diagnosis of prostate cancer,” Clinical Chemistry, vol. 50, no. 12, pp. 2292–2301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sarrats, R. Saldova, J. Comet et al., “Glycan characterization of PSA 2-DE subforms from serum and seminal plasma,” OMICS, vol. 14, no. 4, pp. 465–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Á. Végvári, M. Rezeli, C. Welinder et al., “Identification of prostate-specific antigen (PSA) isoforms in complex biological samples utilizing complementary platforms,” Journal of Proteomics, vol. 73, no. 6, pp. 1137–1147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Kosanovic, S. R. Goc, G. S. Potpara, and M. M. Jankovic, “On chip immuno-affinity profiling of cancer- and benign hyperplasia-associated free prostate specific antigen,” Disease Markers, vol. 31, no. 2, pp. 111–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Huber, H.-P. Schmid, G. Mattarelli, B. Strittmatter, G. J. Van Steenbrugge, and A. Maurer, “Serum free prostate specific antigen: isoenzymes in benign hyperplasia and cancer of the prostate,” Prostate, vol. 27, no. 4, pp. 212–219, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Hilz, J. Noldus, P. Hammerer, F. Buck, M. Luck, and H. Huland, “Molecular heterogeneity of free PSA in sera of patients with benign and malignant prostate tumors,” European Urology, vol. 36, no. 4, pp. 286–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Charrier, C. Tournel, S. Michel, S. Comby, C. Jolivet-Reynaud, J. Passagot et al., “Differential diagnosis of prostate cancer and benign prostate hyperplasia using two-dimensional electrophoresis,” Electrophoresis, vol. 22, no. 9, pp. 1861–1866, 2001. View at Publisher · View at Google Scholar
  16. S. D. Mikolajczyk, K. M. Marker, L. S. Millar et al., “A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer,” Cancer Research, vol. 61, no. 18, pp. 6958–6963, 2001. View at Google Scholar · View at Scopus
  17. S. D. Mikolajczyk, L. S. Millar, T. J. Wang et al., “‘BPSA,’ a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia,” Urology, vol. 55, no. 1, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. H. P. Vollmers and S. Brändlein, “The “early birds”: natural IgM antibodies and immune surveillance,” Histology and Histopathology, vol. 20, no. 3, pp. 927–937, 2005. View at Google Scholar · View at Scopus
  19. H. P. Vollmers and S. Brändlein, “Natural IgM antibodies: from parias to parvenus,” Histology and Histopathology, vol. 21, no. 12, pp. 1355–1366, 2006. View at Google Scholar · View at Scopus
  20. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The three Es of cancer immunoediting,” Annual Review of Immunology, vol. 22, pp. 329–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bélanger, H. Van Halbeek, H. C. B. Graves et al., “Molecular mass and carbohydrate structure of prostate specific antigen: studies for establishment of an international PSA standard,” Prostate, vol. 27, no. 4, pp. 187–197, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Okada, Y. Sato, N. Kobayashi et al., “Structural characteristics of the N-glycans of two isoforms of prostate-specific antigens purified from human seminal fluid,” Biochimica et Biophysica Acta, vol. 1525, no. 1-2, pp. 149–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Mattsson, L. Valmu, P. Laakkonen, U.-H. Stenman, and H. Koistinen, “Structural characterization and anti-angiogenic properties of prostate-specific antigen isoforms in seminal fluid,” Prostate, vol. 68, no. 9, pp. 945–954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Y. White, L. Rodemich, J. O. Nyalwidhe et al., “Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids,” Journal of Proteome Research, vol. 8, no. 2, pp. 620–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Vermassen, M. M. Speeckaert, N. Lumen, S. Rottey, and J. R. Delanghe, “Glycosylation of prostate specific antigen ant its potential diagnostic applications,” Clin Chim Acta, vol. 413, no. 19-20, pp. 1500–1505, 2012. View at Publisher · View at Google Scholar
  27. S. Prakash and P. W. Robbins, “Glycotyping of prostate specific antigen,” Glycobiology, vol. 10, no. 2, pp. 173–176, 2000. View at Google Scholar · View at Scopus
  28. R. Peracaula, G. Tabarés, L. Royle et al., “Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins,” Glycobiology, vol. 13, no. 6, pp. 457–470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Janković and M. M. Kosanović, “Glycosylation of urinary prostate-specific antigen in benign hyperplasia and cancer: assessment by lectin-binding patterns,” Clinical Biochemistry, vol. 38, no. 1, pp. 58–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Kosanović and M. M. Janković, “Sialylation and fucosylation of cancer-associated prostate specific antigen,” Journal of Balkan Union of Oncology, vol. 10, no. 2, pp. 247–250, 2005. View at Google Scholar · View at Scopus
  31. C. I. Balog, K. Stavenhagen, W. L. Fung, C. A. Koeleman, L. A. McDonnell, A. Verhoeven et al., “N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation,” Molecular & Cellular Proteomics, vol. 11, pp. 571–585, 2012. View at Publisher · View at Google Scholar
  32. B. Zipser, D. Bello-DeOcampo, S. Diestel, M. H. Tai, and B. Schmitz, “Mannitou monoclonal antibody uniquely recognizes paucimannose, a marker for human cancer, stemness and inflammation,” Journal of Carbohydrate Chemistry, vol. 31, no. 4-6, pp. 504–518, 2012. View at Publisher · View at Google Scholar
  33. H. H. Wandall and M. A. Tarp, “Therapeutic cancer vaccines: Clinical trials and applications,” in Carbohydrate-Based Vaccines and Immunotherapies, Z. Guo and G. J. Boons, Eds., pp. 333–366, John Wiley & Sons, Hoboken, NJ, USA, 2009. View at Google Scholar