Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35 (2013), Issue 6, Pages 633–640
http://dx.doi.org/10.1155/2013/932356
Clinical Study

Association of a FGFR-4 Gene Polymorphism with Bronchopulmonary Dysplasia and Neonatal Respiratory Distress

Centre for Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany

Received 1 May 2013; Accepted 1 October 2013

Academic Editor: Ross Molinaro

Copyright © 2013 Milad Rezvani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background. Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of premature birth, characterized by impaired alveolar development and inflammation. Pathomechanisms contributing to BPD are poorly understood. However, it is assumed that genetic factors predispose to BPD and other pulmonary diseases of preterm neonates, such as neonatal respiratory distress syndrome (RDS). For association studies, genes upregulated during alveolarization are major candidates for genetic analysis, for example, matrix metalloproteinases (MMPs) and fibroblast growth factors (FGFs) and their receptors (FGFR). Objective. Determining genetic risk variants in a Caucasian population of premature neonates with BPD and RDS. Methods. We genotyped 27 polymorphisms within 14 candidate genes via restriction fragment length polymorphism (RFLP): MMP-1, -2, -9, and -12, -16, FGF receptors 2 and 4, FGF-2, -3, -4, -7, and -18, Signal-Regulatory Protein α (SIRPA) and Thyroid Transcription Factor-1 (TTF-1). Results. Five single nucleotide polymorphisms (SNPs) in MMP-9, MMP-12, FGFR-4, FGF-3, and FGF-7 are associated ( ) with RDS, defined as surfactant application within the first 24 hours after birth. One of them, in FGFR-4 (rs1966265), is associated with both RDS ( ) and BPD ( ). Conclusion. rs1966265 in FGF receptor 4 is a possible genetic key variant in alveolar diseases of preterm newborns.