Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 633–640
http://dx.doi.org/10.1155/2013/932356
Clinical Study

Association of a FGFR-4 Gene Polymorphism with Bronchopulmonary Dysplasia and Neonatal Respiratory Distress

Centre for Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany

Received 1 May 2013; Accepted 1 October 2013

Academic Editor: Ross Molinaro

Copyright © 2013 Milad Rezvani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Northway Jr., R. C. Rosan, and D. Y. Porter, “Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia,” The New England Journal of Medicine, vol. 276, no. 7, pp. 357–368, 1967. View at Google Scholar · View at Scopus
  2. M. C. Walsh, Q. Yao, P. Gettner et al., “Impact of a physiologic definition on bronchopulmonary dysplasia rates,” Pediatrics, vol. 114, no. 5, pp. 1305–1311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. Chye and P. H. Gray, “Rehospitalization and growth of infants with bronchopulmonary dysplasia: a matched control study,” Journal of Paediatrics and Child Health, vol. 31, no. 2, pp. 105–111, 1995. View at Google Scholar · View at Scopus
  4. V. C. Smith, J. A. F. Zupancic, M. C. McCormick et al., “Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia,” Journal of Pediatrics, vol. 144, no. 6, pp. 799–803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Schmidt, E. V. Asztalos, R. S. Roberts et al., “Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms,” The Journal of the American Medical Association, vol. 289, no. 9, pp. 1124–1129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. Jobe and E. Bancalari, “Bronchopulmonary dysplasia,” The American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1723–1729, 2001. View at Google Scholar · View at Scopus
  7. J. P. Kinsella, A. Greenough, and S. H. Abman, “Bronchopulmonary dysplasia,” The Lancet, vol. 367, no. 9520, pp. 1421–1431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Bhandari, M. J. Bizzarro, A. Shetty et al., “Familial and genetic susceptibility to major neonatal morbidities in preterm twins,” Pediatrics, vol. 117, no. 6, pp. 1901–1906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Lavoie, C. Pham, and K. L. Jang, “Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health,” Pediatrics, vol. 122, no. 3, pp. 479–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Coalson, “Pathology of new bronchopulmonary dysplasia,” Seminars in Neonatology, vol. 8, no. 1, pp. 73–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. K. J. Greenlee, Z. Werb, and F. Kheradmand, “Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted,” Physiological Reviews, vol. 87, no. 1, pp. 69–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Kheradmand, K. Rishi, and Z. Werb, “Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2,” Journal of Cell Science, vol. 115, no. 4, pp. 839–848, 2002. View at Google Scholar · View at Scopus
  13. A. Harijith, R. Choo-Wing, S. Cataltepe et al., “A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia,” The American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 5, pp. 621–630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hadchouel, F. Decobert, M. Franco-Montoya et al., “Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development,” PLoS ONE, vol. 3, no. 9, Article ID e3188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. R. Brauer, “MMPs—role in cardiovascular development and disease,” Frontiers in Bioscience, vol. 11, no. 1, pp. 447–478, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Shannon and B. A. Hyatt, “Epithelial-mesenchymal interactions in the developing lung,” Annual Review of Physiology, vol. 66, pp. 625–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Sekine, H. Ohuchi, M. Fujiwara et al., “Fgf10 is essential for limb and lung formation,” Nature Genetics, vol. 21, no. 1, pp. 138–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Dionne, G. Crumley, F. Bellot et al., “Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors,” EMBO Journal, vol. 9, no. 9, pp. 2685–2692, 1990. View at Google Scholar · View at Scopus
  19. K. Keegan, D. E. Johnson, L. T. Williams, and M. J. Hayman, “Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 4, pp. 1095–1099, 1991. View at Google Scholar · View at Scopus
  20. J. Partanen, T. P. Mäkelä, E. Eerola et al., “FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern,” EMBO Journal, vol. 10, no. 6, pp. 1347–1354, 1991. View at Google Scholar · View at Scopus
  21. P. P. Powell, C. Wang, H. Horinouchi et al., “Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung,” The American Journal of Respiratory Cell and Molecular Biology, vol. 19, no. 4, pp. 563–572, 1998. View at Google Scholar · View at Scopus
  22. M. Weinstein, X. Xu, K. Ohyama, and C. X. Deng, “FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung,” Development, vol. 125, no. 18, pp. 3615–3623, 1998. View at Google Scholar · View at Scopus
  23. R. A. Parker, D. P. Lindstrom, and R. B. Cotton, “Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia,” Seminars in Perinatology, vol. 20, no. 3, pp. 206–209, 1996. View at Google Scholar · View at Scopus
  24. O. Levit, Y. Jiang, M. J. Bizzarro et al., “The genetic susceptibility to respiratory distress syndrome,” Pediatric Research, vol. 66, no. 6, pp. 693–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Gardai, Y. Xiao, M. Dickinson et al., “By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation,” Cell, vol. 115, no. 1, pp. 13–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Takenaka, T. K. Prasolava, J. C. Y. Wang et al., “Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells,” Nature Immunology, vol. 8, no. 12, pp. 1313–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Boggaram, “Thyroid transcription factor-I (TTF-I/Nkx2.I/TITFI) gene regulation in the lung,” Clinical Science, vol. 116, no. 1, pp. 27–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Mailaparambil, M. Krueger, U. Heizmann, K. Schlegel, J. Heinze, and A. Heinzmann, “Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia,” Disease Markers, vol. 29, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhu, M. R. Spitz, L. Lei, G. B. Mills, and X. Wu, “A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances lung cancer susceptibility,” Cancer Research, vol. 61, no. 21, pp. 7825–7829, 2001. View at Google Scholar · View at Scopus
  30. L. Joos, J. Q. He, M. B. Shepherdson et al., “The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function,” Human Molecular Genetics, vol. 11, no. 5, pp. 569–576, 2002. View at Google Scholar · View at Scopus
  31. F. Sanger, S. Nicklen, and A. R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Google Scholar · View at Scopus
  32. R. Marttila, R. Haataja, M. Rämet, J. Löfgren, and M. Hallman, “Surfactant protein B polymorphism and respiratory distress syndrome in premature twins,” Human Genetics, vol. 112, no. 1, pp. 18–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. van Sonderen, E. F. W. Halsema, E. J. H. Spiering, and J. G. Koppe, “Genetic influences in respiratory distress syndrome: a twin study,” Seminars in Perinatology, vol. 26, no. 6, pp. 447–449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. N. C. Myrianthopoulos, J. A. Churchill, and A. J. Baszynski, “Respiratory distress syndrome in twins,” Acta Geneticae Medicae et Gemellologiae, vol. 20, no. 2, pp. 199–204, 1971. View at Google Scholar · View at Scopus
  35. R. Marttila, J. Kaprio, and M. Hallman, “Respiratory distress syndrome in twin infants compared with singletons,” The American Journal of Obstetrics and Gynecology, vol. 191, no. 1, pp. 271–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Hallman and R. Haataja, “Genetic basis of respiratory distress syndrome,” Frontiers in Bioscience, vol. 12, no. 7, pp. 2670–2682, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Hilgendorff, K. Heidinger, A. Pfeiffer et al., “Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants,” Genes and Immunity, vol. 8, no. 8, pp. 671–677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. N. J. Kazzi, U. O. Kim, M. W. Quasney, and I. Buhimschi, “Polymorphism of tumor necrosis factor-alpha and risk and severity of bronchopulmonary dysplasia among very low birth weight infants,” Pediatrics, vol. 114, no. 2, pp. e243–e248, 2004. View at Google Scholar · View at Scopus
  39. G. Rocha, E. Proença, A. Areias et al., “HLA and bronchopulmonary dysplasia susceptibility: a pilot study,” Disease Markers, vol. 31, no. 4, pp. 199–203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. H. Manar, M. R. Brown, T. W. Gauthier, and L. A. S. Brown, “Association of glutathione-S-transferase-P1 (GST-P1) polymorphisms with bronchopulmonary dysplasia,” Journal of Perinatology, vol. 24, no. 1, pp. 30–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Danan, P. Jarreau, M. Franco et al., “Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 283, no. 5, pp. L1086–L1093, 2002. View at Google Scholar · View at Scopus
  42. C. G. Schulz, G. Sawicki, R. P. Lemke, B. M. Roeten, R. Schulz, and P. Cheung, “MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates,” Pediatric Research, vol. 55, no. 5, pp. 794–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. W. A. Dik, A. H. L. C. van Kaam, T. Dekker et al., “Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome,” Biology of the Neonate, vol. 89, no. 1, pp. 6–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. L. S. Tai, J. S. T. Sham, D. Xie et al., “Co-overexpression of fibroblast growth factor 3 and epidermal growth factor receptor is correlated with the development of nonsmall cell lung carcinoma,” Cancer, vol. 106, no. 1, pp. 146–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Zhao, S. S. Chua, M. M. Burcin et al., “Phenotypic consequences of lung-specific inducible expression of FGF-3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5898–5903, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Hajitou, E. N. Baramova, K. Bajou et al., “FGF-3 and FGF-4 elicit distinct oncogenic properties in mouse mammary myoepithelial cells,” Oncogene, vol. 17, no. 16, pp. 2059–2071, 1998. View at Google Scholar · View at Scopus
  47. M. S. Park, E. Rieger-Fackeldey, B. L. Schanbacher et al., “Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen,” Pediatric Research, vol. 62, no. 6, pp. 652–657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Srisuma, S. Bhattacharya, D. M. Simon et al., “Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis,” The American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 8, pp. 838–850, 2010. View at Publisher · View at Google Scholar · View at Scopus