Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35 (2013), Issue 6, Pages 741–746
http://dx.doi.org/10.1155/2013/964145
Research Article

FAS and FASL Gene Polymorphisms Are Not Associated with Hepatitis B Virus Infection Based on a Case-Control Study in a Brazilian Population

1Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Guamá, 66075-110 Belém, PA, Brazil
2Fundação Santa Casa de Misericórdia do Pará, 66050-380 Belém, PA, Brazil

Received 13 August 2013; Accepted 20 October 2013

Academic Editor: Xiaohong Li

Copyright © 2013 Bárbara B. Santana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Ganem and R. J. Schneider, “Hepadnaviridae: the viruse and their replication,” in Fields Virology, D. Knipe and P. Howley, Eds., vol. 2, pp. 2923–2969, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2001. View at Google Scholar
  2. J. N. Zuckerman and A. J. Zuckerman, “Current topics in hepatitis B,” Journal of Infection, vol. 41, no. 2, pp. 130–136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. W. M. Lee, “Hepatitis B virus infection,” The New England Journal of Medicine, vol. 337, no. 24, pp. 1733–1745, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Suda and S. Nagata, “Purification and characterization of the Fas-ligand that induces apoptosis,” Journal of Experimental Medicine, vol. 179, no. 3, pp. 873–879, 1994. View at Google Scholar · View at Scopus
  5. T. Suda, T. Takahashi, P. Golstein, and S. Nagata, “Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family,” Cell, vol. 75, no. 6, pp. 1169–1178, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Leithauser, J. Dhein, G. Mechtersheimer et al., “Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells,” Laboratory Investigation, vol. 69, no. 4, pp. 415–429, 1993. View at Google Scholar · View at Scopus
  7. T. A. Ferguson and T. S. Griffith, “A vision of cell death: Fas ligand and immune privilege 10 years later,” Immunological Reviews, vol. 213, no. 1, pp. 228–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Green and T. A. Ferguson, “The role of fas ligand in immune privilege,” Nature Reviews Molecular Cell Biology, vol. 2, no. 12, pp. 917–924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Ashkenazi and V. M. Dixit, “Death receptors: signaling and modulation,” Science, vol. 281, no. 5381, pp. 1305–1308, 1998. View at Google Scholar · View at Scopus
  10. Y. Li, Y. Hao, S. Kang, R. Zhou, N. Wang, and B. L. Qi, “Genetic polymorphisms in the Fas and FasL genes are associated with epithelial ovarian cancer risk and clinical outcomes,” Gynecologic Oncology, vol. 128, pp. 584–589, 2013. View at Google Scholar
  11. W. Wang, Z. Zheng, W. Yu, H. Lin, B. Cui, and F. Cao, “Polymorphisms of the FAS and FASL genes and risk of breast cancer,” Oncology Letters, vol. 3, no. 3, pp. 625–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Tian, F. Pan, J. Li et al., “Association between the FAS/FASL polymorphisms and gastric cancer risk: a meta-analysis,” The Asian Pacific Journal of Cancer Prevention, vol. 13, pp. 945–951, 2012. View at Google Scholar
  13. W. Mahfoudh, N. Bouaouina, S. Gabbouj, and L. Chouchane, “FASL-844 T/C polymorphism: a biomarker of good prognosis of breast cancer in the Tunisian population,” Human Immunology, vol. 73, pp. 932–938, 2012. View at Google Scholar
  14. W. Sung, Y. Wang, Y. Cheng et al., “A polymorphic -844T/C in FasL promoter predicts survival and relapse in non-small cell lung cancer,” Clinical Cancer Research, vol. 17, no. 18, pp. 5991–5999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Shao, Q. Ding, C. Qin et al., “Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population,” Prostate, vol. 71, no. 10, pp. 1122–1130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zhu, C. Qin, M. Wang et al., “Functional polymorphisms in cell death pathway genes and risk of renal cell carcinoma,” Molecular Carcinogenesis, vol. 49, no. 9, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Zhang, L. Wang, E. M. Sturgis et al., “Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck,” Clinical Cancer Research, vol. 12, no. 18, pp. 5596–5602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Park, W. Lee, D. Jung et al., “Polymorphisms in the FAS and FASL genes and survival of early stage non-small cell lung cancer,” Clinical Cancer Research, vol. 15, no. 5, pp. 1794–1800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Lima, A. Morais, F. Lobo, F. M. Calais-da-Silva, F. E. Calais-da-Silva, and R. Medeiros, “Association between FAS polymorphism and prostate cancer development,” Prostate Cancer and Prostatic Diseases, vol. 11, no. 1, pp. 94–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. D. Crew, M. D. Gammon, M. B. Terry et al., “Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk,” Carcinogenesis, vol. 28, no. 12, pp. 2548–2551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Nasi, M. Pinti, R. Bugarini et al., “Genetic polymorphisms of Fas (CD95) and Fas ligand (CD178) influence the rise in CD4+ T cell count after antiretroviral therapy in drug-naïve HIV-positive patients,” Immunogenetics, vol. 57, no. 9, pp. 628–635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Pinti, L. Troiano, M. Nasi et al., “Genetic polymorphisms of Fas (CD95) and FasL (CD178) in human longevity: studies on centenarians,” Cell Death and Differentiation, vol. 9, no. 4, pp. 431–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. R. Huang and N. Manolios, “Investigation of the -1377 polymorphism on the Apo-1/FAS promoter in systemic lupus erythematosus patients using allele-specific amplification,” Pathology, vol. 32, no. 2, pp. 126–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. R. Huang, D. Morris, and N. Manolios, “Identification and characterisation of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene,” Molecular Immunology, vol. 34, no. 8-9, pp. 577–582, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Sun, X. Miao, X. Zhang, W. Tan, P. Xiong, and D. Lin, “Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma,” Journal of the National Cancer Institute, vol. 96, no. 13, pp. 1030–1036, 2004. View at Google Scholar · View at Scopus
  26. A. C. R. Vallinoto, B. B. Santana, E. L. dos Santos et al., “FAS -670A/G single nucleotide polymorphism may be associated with human T lymphotropic virus-1 infection and clinical evolution to TSP/HAM,” Virus Research, vol. 163, no. 1, pp. 178–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ayres, M. Ayres Jr., D. L. Ayres, and A. S. Santos, BioEstat 5. 0: aplicações estatísticas nas áreas de ciências biológicas e médicas, Sociedade Civil Mamirauá, CNPq, Belem, Brazil, 2010.
  28. K. Chatterjee, C. Dandara, U. Gyllensten et al., “A fas gene polymorphism influences herpes simplex virus type 2 infection in South African women,” Journal of Medical Virology, vol. 82, no. 12, pp. 2082–2086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Farre, A. L. Bittencourt, G. Silva-Santos et al., “Fas-670 promoter polymorphism is associated to susceptibility, clinical presentation, and survival in adult T cell leukemia,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 220–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Kupcinskas, T. Wex, J. Bornschein et al., “Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians,” BMC Medical Genetics, vol. 12, article 112, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Chatterjee, M. Engelmark, U. Gyllensten et al., “Fas and FasL gene polymorphisms are not associated with cervical cancer but differ among Black and Mixed-ancestry South Africans,” BMC Research Notes, vol. 2, article 238, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Rudert, E. Visser, L. Forbes, E. Lindridge, Y. Wang, and J. Watson, “Identification of a silencer, enhancer, and basal promoter region in the human CD95 (Fas/APO-1) gene,” DNA and Cell Biology, vol. 14, no. 11, pp. 931–937, 1995. View at Google Scholar · View at Scopus
  33. K. Sibley, S. Rollinson, J. M. Allan et al., “Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia,” Cancer Research, vol. 63, no. 15, pp. 4327–4330, 2003. View at Google Scholar · View at Scopus
  34. Y. J. Jung, Y. J. Kim, L. H. Kim et al., “Putative association of Fas and FasL gene polymorphisms with clinical outcomes of hepatitis B virus infection,” Intervirology, vol. 50, no. 5, pp. 369–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Wu, C. Metz, X. Xu et al., “A novel polymorphic CAAT/enhancer-binding protein β element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients,” Journal of Immunology, vol. 170, no. 1, pp. 132–138, 2003. View at Google Scholar · View at Scopus
  36. A. Vasilescu, S. C. Heath, G. Diop et al., “Genomic analysis of Fas and FasL genes and absence of correlation with disease progression in AIDS,” Immunogenetics, vol. 56, no. 1, pp. 56–60, 2004. View at Publisher · View at Google Scholar · View at Scopus