Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2014, Article ID 401986, 12 pages
http://dx.doi.org/10.1155/2014/401986
Research Article

Prognostic and Biological Significance of MicroRNA-127 Expression in Human Breast Cancer

Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, 305 Zhongshan East Road, Nanjing, Jiangsu 210002, China

Received 5 June 2014; Revised 22 September 2014; Accepted 16 October 2014; Published 12 November 2014

Academic Editor: Andreas Pich

Copyright © 2014 Shaohua Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Jia, M. Zheng, and Y. Zhang, “Unconventional hydrocarbon resources in China and the prospect of exploration and development,” Petroleum Exploration and Development, vol. 39, no. 2, pp. 139–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. P. H. Nelson, “Pore-throat sizes in sandstones, tight sandstones, and shales,” AAPG Bulletin, vol. 93, no. 3, pp. 329–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Xu, Y. Shi, C. Xu, Y. Yang, H. Li, and Z. Chai, “Influences of feldspars on the storage and permeability conditions in tight oil reservoirs: A case study of Chang-6 group, Ordos Basin,” Petroleum Exploration and Development, vol. 40, no. 4, pp. 481–487, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yao, X. Deng, Y. Zhao, T. Han, M. Chu, and J. Pang, “Characteristics of tight oil in Triassic Yanchang Formation, Ordos Basin,” Petroleum Exploration and Development, vol. 40, no. 2, pp. 161–169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Kuang, Y. Tang, D. Lei et al., “Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China,” Petroleum Exploration and Development, vol. 39, no. 6, pp. 700–711, 2012. View at Google Scholar
  6. National Energy Administration, SY/T 6832-2011 Oil and Gas Industry Standard of the People’s Republic of China, Petroleum Industry Press, Beijing, China, 2011.
  7. W. Mingjian, H. Dengfa, B. Hongping, L. Renqi, and G. Baoling, “Upper Palaeozoic gas accumulations of the Yimeng Uplift, Ordos Basin,” Petroleum Exploration and Development, vol. 38, no. 1, pp. 30–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Hu, Theory of Low-Permeability Reservoir, Petroleum Industry Press, Beijing, China, 2009.
  9. M. J. Mayerhofer, E. P. Lolon, C. Rightmire, D. Walser, C. L. Cipolla, and N. R. Warplnskl, “What is stimulated reservoir volume?” SPE Production and Operations, vol. 25, no. 1, pp. 89–98, 2010. View at Google Scholar · View at Scopus
  10. H. Wang, X. Liao, N. Lu et al., “A study on development effect of horizontal well with SRV in unconventional tight oil reservoir,” Journal of the Energy Institute, vol. 87, no. 2, pp. 114–120, 2014. View at Google Scholar
  11. E. Stalgorova and L. Mattar, “Analytical model for history matching and forecasting production in multifrac composite systems,” in Proceedings of the SPE Canadian Unconventional Resources Conference (CURC '12), pp. 450–466, November 2012. View at Scopus
  12. C. R. Clarkson, “Production data analysis of unconventional gas wells: review of theory and best practices,” International Journal of Coal Geology, vol. 109-110, pp. 101–146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Hull, H. Bello, L. P. Richmond et al., “Variable Stimulated Reservoir Volume (SRV) simulation: eagle ford shale case study,” in SPE Unconventional Resources Conference-USA, Society of Petroleum Engineers, The Woodlands, Tex, USA, 2013. View at Publisher · View at Google Scholar
  14. D. K. Agboada and M. Ahmadi, “Production decline and numerical simulation model analysis of the eagle ford shale play,” in Proceedings of the SPE Western Regional & AAPG Pacific Section Meeting Joint Technical Conference, Society of Petroleum Engineers, 2013.
  15. H. Wang, C. Liao, H. Ye et al., “The performance evaluation of old well after SRV in Ordos basin tight oil reservoir,” in Proceedings of the SPE Energy Resources Conference, SPE-169968-MS, Society of Petroleum Engineers, Port of Spain, Trinidad and Tobago, June 2014. View at Publisher · View at Google Scholar
  16. M. J. Mayerhofer, E. P. Lolon, J. E. Youngblood, and J. R. Heinze, “Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett shale,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '06), pp. 976–983, San Antonio, Tex, USA, September 2006. View at Scopus
  17. E. Ozkan, M. Brown, R. Raghavan, and H. Kazemi, “Comparison of fractured horizontal-well performance in conventional and unconventional reservoirs,” in Proceedings of the SPE Western Regional Meeting, pp. 345–360, Society of Petroleum Engineers, March 2009. View at Scopus
  18. E. Ozkan, L. M. Brown, R. Raghavan et al., “Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs,” SPE Reservoir Evaluation & Engineering, vol. 14, no. 02, pp. 248–259, 2011. View at Google Scholar
  19. M. Brown, E. Ozkan, R. Raghavan, and H. Kazemi, “Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs,” SPE Reservoir Evaluation and Engineering, vol. 14, no. 6, pp. 663–676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. O. G. Apaydin, E. Ozkan, and R. Raghavan, “Effect of discontinuous microfractures on ultratight matrix permeability of a dual-porosity medium,” SPE Reservoir Evaluation & Engineering, vol. 15, no. 4, pp. 473–485, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Stalgorova and L. Mattar, “Practical analytical model to simulate production of horizontal wells with branch fractures,” in Proceedings of SPE Canadian Unconventional Resources Conference, Society of Petroleum Engineers, Alberta, Canada, October-November 2012.
  22. E. Stalgorova and L. Mattar, “Analytical model for history matching and forecasting production in multifrac composite systems,” in Proceedings of the SPE Canadian Unconventional Resources Conference (CURC '12), pp. 450–466, Society of Petroleum Engineers, November 2012. View at Scopus
  23. S. P. Ketineni and T. Ertekin, “Analysis of production decline characteristics of a multistage hydraulically fractured horizontal well in a naturally fractured reservoir,” in Proceedings of the SPE Eastern Regional Meeting, Society of Petroleum Engineers, Lexington, Ky, USA, October 2012. View at Publisher · View at Google Scholar
  24. Y.-L. Zhao, L.-H. Zhang, J.-X. Luo, and B.-N. Zhang, “Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir,” Journal of Hydrology, vol. 512, pp. 447–456, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. B. R. Meyer and L. W. Bazan, “A discrete fracture network model for hydraulically induced fractures: theory, parametric and case studies,” in Proceedings of the SPE Hydraulic Fracturing Technology Conference, pp. 571–606, January 2011. View at Scopus
  26. H. Wang, X. Liao, and X. Zhao, “Study of tight oil reservoir flow regimes in different treated horizontal,” Journal of the Energy Institute, 2014. View at Publisher · View at Google Scholar
  27. J. S. Olarewaju and J. W. Lee, “A comprehensive application of a composite reservoir model to pressure-transient analysis,” SPE Reservoir Engineering, vol. 4, no. 3, pp. 325–331, 1989. View at Google Scholar