Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2015, Article ID 684794, 7 pages
http://dx.doi.org/10.1155/2015/684794
Research Article

Serum Metabolites as Potential Biomarkers for Diagnosis of Knee Osteoarthritis

Department of Orthopedics, The General Hospital of Chinese Army, Beijing 100853, China

Received 25 December 2014; Revised 8 February 2015; Accepted 12 February 2015

Academic Editor: Markus Herrmann

Copyright © 2015 Qingmeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Felson, “Osteoarthritis of the knee,” The New England Journal of Medicine, vol. 354, no. 8, pp. 841–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Zhang, R. W. Moskowitz, G. Nuki et al., “OARSI recommendations for the management of hip and knee osteoarthritis, Part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence,” Osteoarthritis and Cartilage, vol. 15, no. 9, pp. 981–1000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. F. J. Blanco and C. Ruiz-Romero, “Osteoarthritis: metabolomic characterization of metabolic phenotypes in OA,” Nature Reviews Rheumatology, vol. 8, no. 3, pp. 130–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Medina, R. Domínguez-Perles, J. I. Gil, F. Ferreres, and A. Gil-Izquierdo, “Metabolomics and the diagnosis of human diseases -A guide to the markers and pathophysiological pathways affected,” Current Medicinal Chemistry, vol. 21, no. 7, pp. 823–848, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Adams, L. A. Setton, E. Kensicki, M. P. Bolognesi, A. P. Toth, and D. L. Nettles, “Global metabolic profiling of human osteoarthritic synovium,” Osteoarthritis and Cartilage, vol. 20, no. 1, pp. 64–67, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Hügle, H. Kovacs, I. A. F. M. Heijnen et al., “Synovial fluid metabolomics in different forms of arthritis assessed by nuclear magnetic resonance spectroscopy,” Clinical and Experimental Rheumatology, vol. 30, no. 2, pp. 240–245, 2012. View at Google Scholar · View at Scopus
  7. X. Li, S. Yang, Y. Qiu et al., “Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis,” Metabolomics, vol. 6, no. 1, pp. 109–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Mickiewicz, B. J. Heard, J. K. Chau et al., “Metabolic profiling of synovial fluid in a unilateral ovine model of anterior cruciate ligament reconstruction of the knee suggests biomarkers for early osteoarthritis,” Journal of Orthopaedic Research, vol. 33, no. 1, pp. 71–77, 2015. View at Publisher · View at Google Scholar
  9. R. Altman, E. Asch, and D. Bloch, “Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee,” Arthritis & Rheumatism, vol. 29, no. 8, pp. 1039–1052, 1986. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Kellgren and J. S. Lawrence, Atlas of Standard Radiographs of Arthritis, Blackwell Scientific, Oxford, UK, 1963.
  11. Y. Qi, Y. Song, H. Gu, G. Fan, and Y. Chai, “Global metabolic profiling using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry,” in Mass Spectrometry in Metabolomics, D. Raftery, Ed., vol. 1198 of Methods in Molecular Biology, pp. 15–27, Springer, New York, NY, USA, 2014. View at Publisher · View at Google Scholar
  12. F. Berenbaum, “Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!),” Osteoarthritis and Cartilage, vol. 21, no. 1, pp. 16–21, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. N. Gowda, S. Zhang, H. Gu, V. Asiago, N. Shanaiah, and D. Raftery, “Metabolomics-based methods for early disease diagnostics,” Expert Review of Molecular Diagnostics, vol. 8, no. 5, pp. 617–633, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Shet, S. M. Siddiqui, H. Yoshihara, J. Kurhanewicz, M. Ries, and X. Li, “High-resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage,” NMR in Biomedicine, vol. 25, no. 4, pp. 538–544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. K. R. Keshari, J. C. Lotz, J. Kurhanewicz, and S. Majumdar, “Correlation of HR-MAS spectroscopy derived metabolite concentrations with collagen and proteoglycan levels and thompson grade in the degenerative disc,” Spine, vol. 30, no. 23, pp. 2683–2688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. K. Madsen, T. Lundstedt, J. Gabrielsson et al., “Diagnostic properties of metabolic perturbations in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 13, no. 1, article R19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Zhai, R. Wang-Sattler, D. J. Hart et al., “Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 6, pp. 1227–1231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Dixon, N. G. Sitton, K. E. Surrall, M. F. R. Martin, M. E. Pickup, and H. A. Bird, “The effect of drugs on serum histidine levels in rheumatoid arthritis,” Rheumatology International, vol. 3, no. 4, pp. 145–149, 1983. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Levasseur, “Bone tissue and hyperhomocysteinemia,” Joint Bone Spine, vol. 76, no. 3, pp. 234–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. A. N. Lamers, J. H. J. van Nesselrooij, V. B. Kraus et al., “Identification of an urinary metabolite profile associated with osteoarthritis,” Osteoarthritis and Cartilage, vol. 13, no. 9, pp. 762–768, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. G. Gjesdal, S. E. Vollset, P. M. Ueland, H. Refsum, H. E. Meyer, and G. S. Tell, “Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: the hordaland homocysteine study,” Journal of Bone and Mineral Research, vol. 22, no. 5, pp. 747–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. R. McLean, P. F. Jacques, J. Selhub et al., “Homocysteine as a predictive factor for hip fracture in older persons,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2042–2049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Berglund, A. Södergren, S. W. Jonsson, and S. R. Dahlqvist, “Atherothrombotic events in rheumatoid arthritis are predicted by homocysteine—a six-year follow-up study,” Clinical and Experimental Rheumatology, vol. 27, no. 5, pp. 822–825, 2009. View at Google Scholar · View at Scopus
  24. B. M. Başkan, F. Sivas, L. A. Aktekin, Y. P. Doǧan, K. Özoran, and H. Bodur, “Serum homocysteine level in patients with ankylosing spondylitis,” Rheumatology International, vol. 29, no. 12, pp. 1435–1439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S.-J. Park, K.-J. Kim, W.-U. Kim, I.-H. Oh, and C.-S. Cho, “Involvement of endoplasmic reticulum stress in homocysteine-induced apoptosis of osteoblastic cells,” Journal of Bone and Mineral Metabolism, vol. 30, no. 4, pp. 474–484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Igari, K. Obara, S. Ono, and Y. Toba, “Tryptophan metabolism in the joint diseases,” Acta Vitaminologica et Enzymologica, vol. 29, no. 1–6, pp. 194–197, 1975. View at Google Scholar · View at Scopus
  27. D. G. Malone, P. W. Dolan, R. R. Brown et al., “Interferon α induced production of indoleamine 2,3 dioxygenase in cultured human synovial cells,” The Journal of Rheumatology, vol. 21, no. 6, pp. 1011–1019, 1994. View at Google Scholar · View at Scopus