Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2015 (2015), Article ID 724935, 7 pages
http://dx.doi.org/10.1155/2015/724935
Research Article

Significant Association of HLA-B Alleles and Genotypes in Thai Children with Autism Spectrum Disorders: A Case-Control Study

1Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
2Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
3Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakarn 10270, Thailand

Received 19 August 2015; Revised 20 October 2015; Accepted 27 October 2015

Academic Editor: Donald H. Chace

Copyright © 2015 Apichaya Puangpetch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Trevarthen and J. T. Delafield-Butt, “Autism as a developmental disorder in intentional movement and affective engagement,” Frontiers in Integrative Neuroscience, vol. 7, article 49, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Fombonne, “Epidemiology of pervasive developmental disorders,” Pediatric Research, vol. 65, no. 6, pp. 591–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. K. T. Siriwanarangsun P and S. Arunpongpaisan, “Prevalence of mental disorders in Thailand: a national survey 2003,” Journal of Mental Health of Thailand, vol. 12, pp. 177–178, 2004. View at Google Scholar
  4. R. Muhle, S. V. Trentacoste, and I. Rapin, “The genetics of autism,” Pediatrics, vol. 113, no. 5, pp. e472–e486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. B. Lauritsen, C. B. Pedersen, and P. B. Mortensen, “Effects of familial risk factors and place of birth on the risk of autism: A nationwide register-based study,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 46, no. 9, pp. 963–971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Money, N. A. Bobrow, and F. C. Clarke, “Autism and autoimmune disease: a family study,” Journal of Autism and Developmental Disorders, vol. 1, no. 2, pp. 146–160, 1971. View at Google Scholar
  7. P. Ashwood and J. Van de Water, “A review of autism and the immune response,” Clinical and Developmental Immunology, vol. 11, no. 2, pp. 165–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hornig and W. I. Lipkin, “Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 7, no. 3, pp. 200–210, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. V. Plioplys, A. Greaves, K. Kazemi, and E. Silverman, “Lymphocyte function in autism and Rett syndrome,” Neuropsychobiology, vol. 29, no. 1, pp. 12–16, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Ashwood, A. Anthony, A. A. Pellicer, F. Torrente, J. A. Walker-Smith, and A. J. Wakefield, “Intestinal lymphocyte populations in children with regressive autism: evidence for extensive mucosal immunopathology,” Journal of Clinical Immunology, vol. 23, no. 6, pp. 504–517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. V. K. Singh, “Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism,” Journal of Neuroimmunology, vol. 66, no. 1-2, pp. 143–145, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Boulanger, “MHC class I in activity-dependent structural and functional plasticity,” Neuron Glia Biology, vol. 1, no. 3, pp. 283–289, 2004. View at Google Scholar
  13. A. R. Torres, T. L. Sweeten, A. Cutler et al., “The association and linkage of the HLA-A2 class I allele with autism,” Human Immunology, vol. 67, no. 4-5, pp. 346–351, 2006. View at Google Scholar
  14. R. Canitano and V. Scandurra, “Risperidone in the treatment of behavioral disorders associated with autism in children and adolescents,” Neuropsychiatric Disease and Treatment, vol. 4, no. 4, pp. 723–730, 2008. View at Google Scholar · View at Scopus
  15. M. Al-Hakbany, S. Awadallah, and L. AL-Ayadhi, “The relationship of HLA class i and ii alleles and haplotypes with autism: a case control study,” Autism Research and Treatment, vol. 2014, Article ID 242048, 6 pages, 2014. View at Publisher · View at Google Scholar
  16. A. R. Torres, A. Maciulis, E. G. Stubbs, A. Cutler, and D. Odell, “The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder,” Human Immunology, vol. 63, no. 4, pp. 311–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. W. W. Daniels, R. P. Warren, J. D. Odell et al., “Increased frequency of the extended or ancestral haplotype B44-SC30-DR4 in autism,” Neuropsychobiology, vol. 32, no. 3, pp. 120–123, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. D. H. Geschwind, “Genetics of autism spectrum disorders,” Trends in Cognitive Sciences, vol. 15, no. 9, pp. 409–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. A. Needleman and A. K. McAllister, “The major histocompatibility complex and autism spectrum disorder,” Developmental Neurobiology, vol. 72, no. 10, pp. 1288–1301, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. G. A. Mostafa, A. A. Shehab, and L. Y. Al-Ayadhi, “The link between some alleles on human leukocyte antigen system and autism in children,” Journal of Neuroimmunology, vol. 255, no. 1-2, pp. 70–74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-L. Chien, Y.-Y. Wu, C.-H. Chen et al., “Association of HLA-DRB1 alleles and neuropsychological function in autism,” Psychiatric Genetics, vol. 22, no. 1, pp. 46–49, 2012. View at Publisher · View at Google Scholar · View at Scopus