Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2016 (2016), Article ID 1701637, 8 pages
http://dx.doi.org/10.1155/2016/1701637
Research Article

Overexpression of Prolyl-4-Hydroxylase-α1 Stabilizes but Increases Shear Stress-Induced Atherosclerotic Plaque in Apolipoprotein E-Deficient Mice

Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji’nan 250012, China

Received 29 May 2016; Revised 19 September 2016; Accepted 22 September 2016

Academic Editor: Michele Malaguarnera

Copyright © 2016 Xiao-qing Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The rupture and erosion of atherosclerotic plaque can induce coronary thrombosis. Prolyl-4-hydroxylase (P4H) plays a central role in the synthesis of all known types of collagens, which are the most abundant constituent of the extracellular matrix in atherosclerotic plaque. The pathogenesis of atherosclerosis is thought to be in part caused by shear stress. In this study, we aimed to investigate a relationship between P4Hα1 and shear stress-induced atherosclerotic plaque. Carotid arteries of ApoE−/− mice were exposed to low and oscillatory shear stress conditions by the placement of a shear stress cast for 2 weeks; we divided 60 male ApoE−/− mice into three groups for treatments with saline (mock) (), empty lentivirus (lenti-EGFP) (), and lentivirus-P4Hα1 (lenti-P4Hα1) (). Our results reveal that after 2 weeks of lenti-P4Hα1 treatment both low and oscillatory shear stress-induced plaques increased collagen and the thickness of fibrous cap and decreased macrophage accumulation but no change in lipid accumulation. We also observed that overexpression of P4Ha1 increased plaque size. Our study suggests that P4Hα1 overexpression might be a potential therapeutic target in stabilizing vulnerable plaques.