Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2016, Article ID 4095723, 7 pages
http://dx.doi.org/10.1155/2016/4095723
Research Article

Plasma Brain-Derived Neurotrophic Factor as a Biomarker for the Main Types of Mild Neurocognitive Disorders and Treatment Efficacy: A Preliminary Study

State Institution “Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine”, 20 Winter Boulevard, Zaporizhia 69096, Ukraine

Received 9 June 2016; Revised 14 July 2016; Accepted 23 July 2016

Academic Editor: Luisella Bocchio-Chiavetto

Copyright © 2016 Oleg A. Levada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. V. Forlenza, B. S. Diniz, F. Stella, A. L. Teixeira, and W. F. Gattaz, “Mild cognitive impairment (part 1): clinical characteristics and predictors of dementia,” Revista Brasileira de Psiquiatria, vol. 35, no. 2, pp. 178–185, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Text Revision, American Psychiatric Association, Arlington, Va, USA, 5th edition, 2013.
  3. T. Luck, F. S. Then, M. L. Schroeter et al., “Prevalence of DSM-5 mild neurocognitive disorder in dementia-free older adults—results of the population-based LIFE-adult-study,” The American Journal of Geriatric Psychiatry, 2016. View at Publisher · View at Google Scholar
  4. X. Li, C. Ma, J. Zhang et al., “Prevalence of and potential risk factors for mild cognitive impairment in community-dwelling residents of Beijing,” Journal of the American Geriatrics Society, vol. 61, no. 12, pp. 2111–2119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Ding, Q. Zhao, Q. Guo et al., “Prevalence of mild cognitive impairment in an urban community in China: a cross-sectional analysis of the Shanghai Aging Study,” Alzheimer's & Dementia, vol. 11, no. 3, pp. 300–309.e2, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 270–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ishii, K. Meguro, S. Yamaguchi, H. Ishikawa, and A. Yamadori, “Prevalence and cognitive performances of vascular cognitive impairment no dementia in Japan: the Osaki-Tajiri Project,” European Journal of Neurology, vol. 14, no. 6, pp. 609–616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. B. Frisoni, S. Galluzzi, L. Bresciani, O. Zanetti, and C. Geroldi, “Mild cognitive impairment with subcortical vascular features: clinical characteristics and outcome,” Journal of Neurology, vol. 249, no. 10, pp. 1423–1432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Passaro, E. D. Nora, M. L. Morieri et al., “Brain-derived neurotrophic factor plasma levels: relationship with dementia and diabetes in the elderly population,” The Journals of Gerontology—Series A Biological Sciences and Medical Sciences, vol. 70, no. 3, pp. 294–302, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ventriglia, R. Zanardini, C. Bonomini et al., “Serum brain-derived neurotrophic factor levels in different neurological diseases,” BioMed Research International, vol. 2013, Article ID 901082, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. O. A. Levada and N. V. Cherednichenko, “Brain-derived neurotrophic factor (BDNF): neurobiology and marker value in neuropsychiatry,” Likars'ka Sprava, no. 3-4, pp. 15–25, 2015. View at Google Scholar · View at Scopus
  12. J. G. Lee, B. S. Shin, Y. S. You et al., “Decreased serum brain-derived neurotrophic factor levels in elderly Korean with dementia,” Psychiatry Investigation, vol. 6, no. 4, pp. 299–305, 2009. View at Publisher · View at Google Scholar
  13. K. S. Hwang, A. S. Lazaris, J. A. Eastman et al., “Plasma BDNF levels associate with Pittsburgh compound B binding in the brain,” Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 1, no. 2, pp. 187–193, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Martocchia, M. Curto, S. Scaccianoce et al., “Effects of escitalopram on serum BDNF levels in elderly patients with depression: a preliminary report,” Aging Clinical and Experimental Research, vol. 26, no. 4, pp. 461–464, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Andreescu, E. Teverovsky, B. Fu, T. F. Hughes, C.-C. H. Chang, and M. Ganguli, “Old worries and new anxieties: behavioral symptoms and mild cognitive impairment in a population study,” The American Journal of Geriatric Psychiatry, vol. 22, no. 3, pp. 274–284, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Cipriani, T. A. Furukawa, G. Salanti et al., “Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis,” The Lancet, vol. 373, no. 9665, pp. 746–758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  18. A. R. Luria, Higher Cortical Functions in Man, Basic Books, New York, NY, USA, 1966.
  19. M. R. Schoenberg and J. G. Scott, The Little Black Book of Neuropsychology, Springer Science + Business Media, New York, NY, USA, 2011.
  20. D. J. Libon, R. A. Swenson, E. J. Barnoski, and L. P. Sands, “Clock drawing as an assessment tool for dementia,” Archives of Clinical Neuropsychology, vol. 8, no. 5, pp. 405–415, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. J. G. Borkowski, A. L. Benton, and O. Spreen, “Word fluency and brain damage,” Neuropsychologia, vol. 5, no. 2, pp. 135–140, 1967. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Cummings, M. Mega, K. Gray, S. Rosenberg-Thompson, D. A. Carusi, and J. Gornbein, “The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia,” Neurology, vol. 44, no. 12, pp. 2308–2314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Tinetti, “Performance-oriented assessment of mobility problems in elderly patients,” Journal of the American Geriatrics Society, vol. 34, no. 2, pp. 119–126, 1986. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Bucks, D. L. Ashworth, G. K. Wilcock, and K. Siegfried, “Assessment of activities of daily living in dementia: development of the Bristol Activities of Daily Living Scale,” Age and Ageing, vol. 25, no. 2, pp. 113–120, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Schindowski, K. Belarbi, and L. Buée, “Neurotrophic factors in Alzheimer's disease: role of axonal transport,” Genes, Brain and Behavior, vol. 7, no. 1, pp. 43–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. N. Jovanovic, A. J. Czernik, A. A. Fienberg, P. Greengard, and T. S. Sihra, “Synapsins as mediators of BDNF-enhanced neurotransmitter release,” Nature Neuroscience, vol. 3, no. 4, pp. 323–329, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Korte, H. Kang, T. Bonhoeffer, and E. Schuman, “A role for BDNF in the late-phase of hippocampal long-term potentiation,” Neuropharmacology, vol. 37, no. 4-5, pp. 553–559, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. McAllister, L. C. Katz, and D. C. Lo, “Neurotrophins and synaptic plasticity,” Annual Review of Neuroscience, vol. 22, pp. 295–318, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ladea and M. Bran, “Brain derived neurotrophic factor (BDNF) levels in depressed women treated with open-label escitalopram,” Psychiatria Danubina, vol. 25, no. 2, pp. 128–132, 2013. View at Google Scholar · View at Scopus
  30. M. Polyakova, C. Sander, K. Arelin et al., “First evidence for glial pathology in late life minor depression: S100b is increased in males with minor depression,” Frontiers in Cellular Neuroscience, vol. 9, article 406, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Serra-Millàs, “Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation?” World Journal of Psychiatry, vol. 6, no. 1, pp. 84–101, 2016. View at Publisher · View at Google Scholar
  32. T. Nakahashi, H. Fujimura, C. A. Altar et al., “Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor,” FEBS Letters, vol. 470, no. 2, pp. 113–117, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Pillai, A. Kale, S. Joshi et al., “Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology,” The International Journal of Neuropsychopharmacology, vol. 13, no. 4, pp. 535–539, 2010. View at Publisher · View at Google Scholar · View at Scopus