Table of Contents
Dataset Papers in Science
Volume 2013 (2013), Article ID 597023, 8 pages
http://dx.doi.org/10.1155/2013/597023
Dataset Paper

Investigation of the Working Parameters of a Single Magnetron of a Multiple Ion Cluster Source: Determination of the Relative Influence of the Parameters on the Size and Density of Nanoparticles

Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain

Received 4 March 2013; Accepted 2 April 2013

Academic Editors: B. Todorovic Markovic and T. Tsurui

Copyright © 2013 Manuel Ruano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Haberland, M. Karrais, M. Mall, and Y. Thurner, “Thin films from energetic cluster impact: a feasibility study,” Journal of Vacuum Science & Technology A, vol. 10, no. 5, pp. 3266–3271, 1992. View at Publisher · View at Google Scholar
  2. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, and Y. Thurner, “Filling of micron-sized contact holes with copper by energetic cluster impact,” Journal of Vacuum Science & Technology A, vol. 12, no. 5, p. 2925, 1994. View at Publisher · View at Google Scholar
  3. S. H. Baker, S. C. Thornton, A. M. Keen et al., “The construction of a gas aggregation source for the preparation of mass-selected ultrasmall metal particles,” Review of Scientific Instruments, vol. 68, no. 4, pp. 1853–1857, 1997. View at Google Scholar · View at Scopus
  4. S. H. Baker, S. C. Thornton, K. W. Edmonds, M. J. Maher, C. Norris, and C. Binns, “The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters,” Review of Scientific Instruments, vol. 71, no. 8, pp. 3178–3183, 2000. View at Google Scholar · View at Scopus
  5. J. Schmelzer Jr., S. A. Brown, A. Wurl, M. Hyslop, and R. J. Blaikie, “Finite-size effects in the conductivity of cluster assembled nanostructures,” Physical Review Letters, vol. 88, Article ID 226802, 4 pages, 2002. View at Publisher · View at Google Scholar
  6. R. Russo, A. Cianchi, Y. H. Akhmadeev et al., “UHV arc for high quality film deposition,” Surface and Coatings Technology, vol. 201, no. 7, pp. 3987–3992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Russo, L. Catani, A. Cianchi, S. Tazzari, and J. Langner, “High quality superconducting niobium films produced by an ultra-high vacuum cathodic arc,” Superconductor Science and Technology, vol. 18, no. 7, pp. L41–L44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. L. Román García, L. Martínez Orellana, M. Díaz Lagos, and Y. Huttel, Spanish Patent P201030059, PCT/ES2011/070032, 2010.
  9. Oxford Applied Research, http://www.oaresearch.co.uk/.
  10. L. Martínez, M. Díaz, E. Román, M. Ruano, P. D. Llamosa, and Y. Huttel, “Generation of nanoparticles with adjustable size and controlled stoichiometry: recent advances,” Langmuir, vol. 28, no. 30, pp. 11241–11249, 2012. View at Publisher · View at Google Scholar
  11. J. M. Colino García, “Unidad de pulverización catódica de blancos circulares,” Spanish Patent P200900929, 2009.
  12. M. Ruano, M. Díaz, L. Martínez et al., “Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium,” Physical Chemistry Chemical Physics, vol. 15, no. 1, pp. 316–329, 2013. View at Publisher · View at Google Scholar
  13. M. Díaz, L. Martínez, M. Ruano et al., “Morphological, structural, and magnetic properties of Co nanoparticles in a silicon oxide matrix,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 5321–5333, 2011. View at Publisher · View at Google Scholar
  14. http://www.nanotec.es/.