Evidence-Based Complementary and Alternative Medicine

Evidence-Based Complementary and Alternative Medicine / 2005 / Article

Original Article | Open Access

Volume 2 |Article ID 569165 | https://doi.org/10.1093/ecam/neh054

Vanita Gupta, Asheesh Gupta, Shalini Saggu, Harish M. Divekar, K. Grover, Ratan Kumar, "Anti-stress and Adaptogenic Activity of l-Arginine Supplementation", Evidence-Based Complementary and Alternative Medicine, vol. 2, Article ID 569165, 5 pages, 2005. https://doi.org/10.1093/ecam/neh054

Anti-stress and Adaptogenic Activity of l-Arginine Supplementation

Received29 Jul 2004
Accepted04 Nov 2004


In the present study, oral supplementation of l-arginine in rats was evaluated for its anti-stress and adaptogenic activity using the cold (5°C)–hypoxia (428 mmHg)–restraint (C-H-R) animal model. A dose-dependent study of l-arginine was carried out at doses of 12.5, 25.0, 50.0, 100.0, 200.0 and 500.0 mg/kg body weight, administered orally 30 min prior to C-H-R exposure. The time taken by the rat to attain a rectal temperature of 23°C (Trec 23°C) during C-H-R exposure and its recovery to Trec 37°C at normal atmospheric pressure and 32 ± 1°C were used as biomarkers of anti-stress and adaptogenic activity. Biochemical parameters related to lipid peroxidation, anti-oxidants, cell membrane permeability, nitric oxide and stress, with and without administration of the least effective l-arginine dose, were measured in rats on attaining Trec 23°C and Trec 37°C. The least effective adaptogenic dose of l-arginine was 100.0 mg/kg body weight. The C-H-R exposure of control rats, on attaining Trec 23°C, resulted in a significant increase in plasma malondialdehyde (MDA), blood lactate dehydrogenase (LDH) and a decrease in blood catalase (CAT) and plasma testosterone levels. On recovery (Trec 37°C) of control rats, there was a further decrease in CAT and plasma testosterone, and an increase in LDH. l-Arginine supplementation resulted in a significant decrease in plasma MDA, an increase in blood superoxide dismutase (SOD), CAT levels maintained at control values and a lower increase in LDH compared with controls (45.3 versus 58.5% and 21.5 versus 105.2%) on attaining Trec 23°C during C-H-R exposure and on recovery to Trec 37°C. The results suggested that l-arginine possesses potent anti-stress activity during C-H-R exposure and recovery from C-H-R-induced hypothermia.

Copyright © 2005 Vanita Gupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles