Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 109164, 7 pages
http://dx.doi.org/10.1155/2011/109164
Research Article

Ethanol Extract of the Flower Chrysanthemum morifolium Augments Pentobarbital-Induced Sleep Behaviors: Involvement of Cl Channel Activation

1College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
2Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
3College of Pharmacy, Woosuk University, Samrye 565-701, Republic of Korea

Received 10 November 2010; Accepted 11 January 2011

Copyright © 2011 Jae-Wook Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Lai, Y. H. Lim, J. Su, H. M. Shen, and C. N. Ong, “Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS,” Journal of Chromatography B, vol. 848, no. 2, pp. 215–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Chu, L. Fu, Y. Guan, and J. Ye, “Determination and differentiation of Flos Chrysanthemum based on characteristic electrochemical profiles by capillary electrophoresis with electrochemical detection,” Journal of Agricultural and Food Chemistry, vol. 52, no. 26, pp. 7828–7833, 2004. View at Google Scholar · View at Scopus
  3. H. Kim and Y. S. Lee, “Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities,” Planta Medica, vol. 71, no. 9, pp. 871–876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Jiang, Q. Xia, W. Xu, and M. Zheng, “Chrysanthemum morifolium attenuated the reduction of contraction of isolated rat heart and cardiomyocytes induced by ischemia/reperfusion,” Pharmazie, vol. 59, no. 7, pp. 565–567, 2004. View at Google Scholar · View at Scopus
  5. M. Miyazawa and M. Hisama, “Antimutagenic activity of flavonoids from Chrysanthemum morifolium,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 10, pp. 2091–2099, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ukiya, T. Akihisa, K. Yasukawa et al., “Constituents of Compositae plants. 2. Triterpene diols, triols, and their 3-O-fatty acid esters from edible Chrysanthemum flower extract and their anti-inflammatory effects,” Journal of Agricultural and Food Chemistry, vol. 49, no. 7, pp. 3187–3197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Z. Lin and J. M. Harnly, “Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat),” Food Chemistry, vol. 120, no. 1, pp. 319–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. W. Beninger, M. M. Abou-Zaid, A. L. E. Kistner et al., “A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity,” Journal of Chemical Ecology, vol. 30, no. 3, pp. 589–606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. G. L. Hertog, E. J. M. Feskens, P. C. H. Hollman, M. B. Katan, and D. Kromhout, “Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study,” The Lancet, vol. 342, no. 8878, pp. 1007–1011, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Ohayon, “Methodology of a study on insomnia in the general population,” Encephale, vol. 28, no. 3 I, pp. 217–226, 2002. View at Google Scholar · View at Scopus
  11. C. M. Morin and S. E. Gramling, “Sleep patterns and aging: comparison of older adults with and without insomnia complaints,” Psychology and aging, vol. 4, no. 3, pp. 290–294, 1989. View at Google Scholar · View at Scopus
  12. A. Chistina Grobin, J. R. Inglefield, R. D. Schwartz-Bloom, L. L. Devaud, and A. L. Morrow, “Fluorescence imaging of GABAA receptor-mediated intracellular [Cl] in P19-N cells reveals unique pharmacological properties,” Brain Research, vol. 827, no. 1-2, pp. 1–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Möhler, J. M. Fritschy, and U. Rudolph, “A new benzodiazepine pharmacology,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 1, pp. 2–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Tobler, C. Kopp, T. Deboer, and U. Rudolph, “Diazepam-induced changes in sleep: role of the α1 GABA(A) receptor subtype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6464–6469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Rudolph, F. Crestani, and H. Möhler, “GABA(A) receptor subtypes: dissecting their pharmacological functions,” Trends in Pharmacological Sciences, vol. 22, no. 4, pp. 188–194, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Zhu and R. C. Baker, “Effects of inhalation anesthetics on kainate-induced glutamate release from cerebellar granule cells,” Life Sciences, vol. 58, no. 16, pp. 1359–1366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Follesa, P. Porcu, C. Sogliano et al., “Changes in GABAA receptor γ subunit gene expression induced by long-term administration of oral contraceptives in rats,” Neuropharmacology, vol. 42, no. 3, pp. 325–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Darias, S. Abdala, D. Martin-Herrera, M. Luisa Tello, and S. Vega, “CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives,” Pharmazie, vol. 53, no. 7, pp. 477–481, 1998. View at Google Scholar · View at Scopus
  19. C. Wolfman, H. Viola, M. Marder et al., “Anxioselective properties of 6,3'-dinitroflavone, a high-affinity benzodiazepine receptor ligand,” European Journal of Pharmacology, vol. 318, no. 1, pp. 23–30, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. M. R. West and C. R. Molloy, “A microplate assay measuring chloride ion channel activity,” Analytical Biochemistry, vol. 241, no. 1, pp. 51–58, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Glowinski and L. L. Iversen, “Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain,” Journal of Neurochemistry, vol. 13, no. 8, pp. 655–669, 1966. View at Google Scholar · View at Scopus
  22. D. S. Segal and R. Kuczenski, “Tyrosine hydroxylase activity: regional and subcellular distribution in brain,” Brain Research, vol. 68, no. 2, pp. 261–266, 1974. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Han, Y. Ma, J. S. Eun et al., “Anxiolytic-like effects of sanjoinine A isolated from Zizyphi spinosi Semen: possible involvement of GABAergic transmission,” Pharmacology Biochemistry and Behavior, vol. 92, no. 2, pp. 206–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. F. C. F. De Sousa, B. A. Pereira, V. T. M. Lima et al., “Central nervous system activity of yangambin from Ocotea duckei Vattimo (Lauraceae) in mice,” Phytotherapy Research, vol. 19, no. 4, pp. 282–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Ma, H. Han, J. S. Eun, H. C. Kim, J. T. Hong, and KI. W. Oh, “Sanjoinine A isolated from Zizyphi Spinosi Semen augments pentobarbital-induced sleeping behaviors through the modification of GABA-ergic systems,” Biological and Pharmaceutical Bulletin, vol. 30, no. 9, pp. 1748–1753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Martínez, F. Domínguez, S. Orozco et al., “Neuropharmacological effects of an ethanol extract of the Magnolia dealbata Zucc. leaves in mice,” Journal of Ethnopharmacology, vol. 106, no. 2, pp. 250–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Ma, H. Ma, Y. J. Jo et al., “Honokiol potentiates pentobarbital-induced sleeping behaviors through GABAA receptor Cl channel activation,” Biomolecules and Therapeutics, vol. 16, no. 4, pp. 328–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Han, Y. Ma, J. S. Eun, J. T. Hong, and KI. W. Oh, “Anxiolytic-like effects of cyclopeptide fraction alkaloids of Zizyphi spinosi semen: possible involvement of GABAA receptors,” Biomolecules and Therapeutics, vol. 16, no. 3, pp. 261–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. L. Macdonald and R. W. Olsen, “GABAA receptor channels,” Annual Review of Neuroscience, vol. 17, pp. 569–602, 1994. View at Google Scholar · View at Scopus
  30. U. Rudolph and H. Möhler, “GABA-based therapeutic approaches: GABAA receptor subtype functions,” Current Opinion in Pharmacology, vol. 6, no. 1, pp. 18–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. J. K. Tillakaratne, L. Medina-Kauwe, and K. M. Gibson, “Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues,” Comparative Biochemistry and Physiology A: Physiology, vol. 112, no. 2, pp. 247–263, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Buddhala, C. C. Hsu, and J. Y. Wu, “A novel mechanism for GABA synthesis and packaging into synaptic vesicles,” Neurochemistry International, vol. 55, no. 1–3, pp. 9–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Chebib and G. A. R. Johnston, “GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology,” Journal of Medicinal Chemistry, vol. 43, no. 8, pp. 1427–1447, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. J. Zhang, “Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders,” Life Sciences, vol. 75, no. 14, pp. 1659–1699, 2004. View at Publisher · View at Google Scholar · View at Scopus