Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 201953, 8 pages
http://dx.doi.org/10.1093/ecam/neq029
Original Article

Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

1Graduate Program of Health Sciences, State University of Maringa, Parana, Brazil
2Department of Pharmacy, State University of Maringa, Colombo Avenue, 5790, CEP 87020-900, Maringa, Parana, Brazil

Received 23 September 2009; Accepted 8 March 2010

Copyright © 2011 Kelen Fátima Dalben Dota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Reese and R. F. Betts, “Antibiotic use,” in A Practical Approach to Infectious Disease, R. E. Reese and R. F. Betts, Eds., Little, Brown and Company, Boston, Mass, USA, 3rd edition, 1991. View at Google Scholar
  2. J. D. Sobel, “Vulvovaginal candidosis,” Lancet, vol. 369, no. 9577, pp. 1961–1971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. S. H. Ferraza, M. L. F. Maluf, M. E. L. Consolaro, C. S. Shinobu, T. I. E. Svidzinski, and M. R. Batista, “Characterization of yeasts isolated from the vagina and their association with vulvovaginal candidiasis in two cities of the South of Brazil,” Revista Brasileira de Ginecologia e Obstetrícia, vol. 27, pp. 58–63, 2005. View at Google Scholar
  4. M. E. L. Consolaro, T. A. Albertone, C. S. Yoshida, J. Mazucheli, R. M. Peralta, and T. I. E. Svidzinski, “Correlation of Candida species and symptoms among patients with vulvovaginal candidiasis in Maringá, Paraná, Brazil,” Revista Iberoamericana de Micología, vol. 21, pp. 202–505, 2004. View at Google Scholar
  5. C.-C. Lai, C.-K. Tan, Y.-T. Huang, P.-L. Shao, and P.-R. Hsueh, “Current challenges in the management of invasive fungal infections,” Journal of Infection and Chemotherapy, vol. 14, no. 2, pp. 77–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Espinel-Ingroff and E. Canton, “Comparison of Neo-Sensitabs tablet diffusion assay with CLSI broth microdilution M38-A and disk diffusion methods for testing susceptibility of filamentous fungi with amphotericin B, caspofungin, itraconazole, posaconazole, and voriconazole,” Journal of Clinical Microbiology, vol. 46, no. 5, pp. 1793–1803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Ghannoum and L. B. Rice, “Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 501–517, 1999. View at Google Scholar · View at Scopus
  8. M. E. L. Consolaro, T. A. Albertoni, A. E. Svidzinski, R. M. Peralta, and T. I. E. Svidzinski, “Vulvovaginal candidiasis is associated with the production of germ tubes by Candida albicans,” Mycopathologia, vol. 159, no. 4, pp. 501–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. F. D. Dota, C. S. Shinobu, E. V. Patussi, M. E. L. Consolaro, and T. I. E. Svidzinski, “Susceptibility to vaginal yeast in most used antifungal in Maringá, Paraná, Brazil,” Acta Bioquímica Clínica Latinoamericana, vol. 42, pp. 561–566, 2008. View at Google Scholar
  10. G. A. Burdock, “Review of the biological properties and toxicity of bee propolis (Propolis),” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. M. L. Bruschi, M. L. C. Cardoso, M. B. Lucchesi, and M. P. D. Gremião, “Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization,” International Journal of Pharmaceutics, vol. 264, no. 1-2, pp. 45–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Bruschi, E. H. G. Lara, C. H. G. Martins et al., “Preparation and antimicrobial activity of gelatin microparticles containing propolis against oral pathogens,” Drug Development and Industrial Pharmacy, vol. 32, no. 2, pp. 229–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. P. Oliveira, R. Longhini, S. L. Franco, and T. I. E. Svidzinski, “Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions,” Memórias do Instituto Oswaldo Cruz, vol. 101, pp. 493–497, 2006. View at Google Scholar
  14. M. Imhof, M. Lipovac, CH. Kurz, J. Barta, H. C. Verhoeven, and J. C. Huber, “Propolis solution for the treatment of chronic vaginitis,” International Journal of Gynecology and Obstetrics, vol. 89, no. 2, pp. 127–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. L. Ghisalbert, “Propolis: a review,” Bee World, vol. 60, pp. 59–80, 1979. View at Google Scholar
  16. M. C. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995. View at Google Scholar · View at Scopus
  17. V. S. Bankova, A. Dyulgerov, S. S. Popov et al., “Propolis produced in Bulgaria and Mongolia: phenolic compounds and plant origin,” Apidologie, vol. 23, pp. 79–85, 1992. View at Google Scholar
  18. K. R. Markham, K. A. Mitchell, A. L. Wilkins, J. A. Daldy, and Y. Lu, “HPLC and GC-MS identification of the major organic constituents in New Zealand propolis,” Phytochemistry, vol. 42, no. 1, pp. 205–211, 1996. View at Google Scholar · View at Scopus
  19. A. Salatino, É. W. Teixeira, G. Negri, and D. Message, “Origin and chemical variation of Brazilian propolis,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 33–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. É. W. Teixeira, D. Message, G. Negri, A. Salatino, and P. C. Stringheta, “Seasonal variation, chemical composition and antioxidant activity of brazilian propolis samples,” Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 3, pp. 307–315, 2010. View at Publisher · View at Google Scholar
  21. M. Búfalo, J. M. G. Candeias, and J. M. Sforcin, “In vitro cytotoxic effect of Brazilian green Propolis on human laryngeal epidermoid carcinoma (HEp-2) cells,” Evidence-Based Complementary and Alternative Medicine, vol. 6, pp. 483–487, 2009. View at Google Scholar
  22. V. Bankova, “Recent trends and important developments in propolis research,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 29–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. C. Marcucci, Process To Typing Natural Products. Requested Patent, Brazilian National Institute for Intellectual Property (INPI), 2000.
  24. C. Ota, C. Unterkircher, V. Fantinato, and M. T. Shimizu, “Antifungal activity of propolis on different species of Candida,” Mycoses, vol. 44, no. 9-10, pp. 375–378, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Bruschi, D. S. Jones, H. Panzeri, M. P. D. Gremião, O. De Freitas, and E. H. G. Lara, “Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties,” Journal of Pharmaceutical Sciences, vol. 96, no. 8, pp. 2074–2089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Bruschi, R. S. Lopes, S. L. Franco, and M. P. D Gremião, “In vitro release of propolis from gelatin microparticles prepared by spray-drying technique,” Journal of Basic and Applied Sciences, vol. 25, pp. 79–84, 2004. View at Google Scholar
  27. T. Sugita, S. Kurosaka, M. Yajitate, H. Sato, and A. Nishikawa, “Extracellular proteinase and phospholipase activity of three genotypic strains of a human pathogenic yeast, Candida albicans,” Microbiology and Immunology, vol. 46, no. 12, pp. 881–883, 2002. View at Google Scholar · View at Scopus
  28. D. H. Larone, Medically Important Fungi. A Guide to Identification, ASM Press, Washington, DC, USA, 3th edition, 2005.
  29. Clinical Laboratory Standards Institute, Reference Method for Broth Dilution Antifungal Susceptibility Testing for Yeasts: Approved Standard, M27-A2, Clinical Laboratory Standards Institute, Wayne, Pa, USA, 2002.
  30. National Committee for Clinical Laboratory Standards, Reference Method for Broth Dilution Antifungal Susceptibility Testing for Yeasts: Approved Standard, M27-A, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 1997.
  31. R. G. Woisky and A. Salatino, “Analysis of propolis: some parameters and procedures for chemical quality control,” Journal of Apicultural Research, vol. 37, no. 2, pp. 99–105, 1998. View at Google Scholar · View at Scopus
  32. M. L. Bruschi, S. L. Franco, and M. P. D. Gremião, “Application of an HPLC method for analysis of propolis extract,” Journal of Liquid Chromatography and Related Technologies, vol. 26, no. 14, pp. 2399–2409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sommez, L. Kirilmaz, M. Yucesoy, B. Yücel, and B. Ylmaz, “The effect of bee propolis on oral pathogens and human gingival fibroblast,” Journal of Ethnopharmacology, vol. 102, pp. 371–376, 2005. View at Google Scholar
  34. T. P. T. Cushnie and A. J. Lamb, “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, vol. 26, no. 5, pp. 343–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Biguccia, B. Luppia, L. Monacoa, T. Cerchiarab, and V. Zecchia, “Pectin-based microspheres for colon-specific delivery of vancomycin,” Journal of Pharmacy and Pharmacology, vol. 61, pp. 41–46, 2009. View at Google Scholar
  36. K. Salomão, P. R. S. Pereira, L. C. Campos et al., “Brazilian propolis: correlation between chemical composition and antimicrobial activity,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 3, pp. 317–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Paulino, C. Teixeira, R. Martins et al., “Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis,” Planta Medica, vol. 72, no. 10, pp. 899–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Sojakova, D. Liptajova, M. Borovsky, and J. Subik, “Fluconazole and itraconazole susceptibility of vaginal yeast isolates from Slovakia,” Mycopathologia, vol. 157, no. 2, pp. 163–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. E. Lynch, J. D. Sobel, and P. L. Fidel Jr., “Role of fungal drug resistance in the pathogenesis of recurrent vulvovaginal candidiasis,” Journal of Medical and Veterinary Mycology, vol. 34, pp. 337–339, 2000. View at Google Scholar
  40. P. Nyirjesy, S. M. Seeney, M. H. T. Grody, C. A. Jordan, and H. R. Buckley, “Chronic fungal vaginitis: the value of cultures,” American Journal of Obstetrics and Gynecology, vol. 173, no. 3, pp. 820–823, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. D. P. Kontoyiannis and R. E. Lewis, “Antifungal drug resistance of pathogenic fungi,” Lancet, vol. 359, no. 9312, pp. 1135–1144, 2002. View at Publisher · View at Google Scholar · View at Scopus