Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 392627, 8 pages
http://dx.doi.org/10.1093/ecam/nep056
Original Article

Antihypertension Induced by Tanshinone IIA Isolated from the Roots of Salvia miltiorrhiza

1Division of Cardiovascular Medicine, Taipei Medical University-Wan Fang Hospital, Taipei City 11601, Taiwan
2Department of Pharmacy, Tajen University, Yen-Pou, Ping Tung Shien 90701, Taiwan
3Department of Hematology, Guangzhou First Municipal People’s Hospital, Guangzhou City, China
4Department of Biotechnology, Hung Kuang University, Sha Lu, Taichung Shien 43301, Taiwan
5Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan

Received 22 October 2008; Accepted 7 May 2009

Copyright © 2011 Paul Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Wu, M. Liu, and S. Zhang, “Dan Shen agents for acute ischaemic stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD004295, 2004. View at Google Scholar · View at Scopus
  2. X.-Y. Ji, B. K.-H. Tan, and Y.-Z. Zhu, “Salvia miltiorrhiza and ischemic diseases,” Acta Pharmacologica Sinica, vol. 21, no. 12, pp. 1089–1094, 2000. View at Google Scholar · View at Scopus
  3. S. H. Oh, K.-H. Cho, B.-S. Yang, and Y. K. Roh, “Natural compounds from Danshen suppress the activity of hepatic stellate cells,” Archives of Pharmacal Research, vol. 29, no. 9, pp. 762–767, 2006. View at Google Scholar · View at Scopus
  4. Y. L. Chen, S. P. Yang, M. S. Shiao, J. W. Chen, and S. J. Lin, “Salvia miltiorrhiza inhibits intimal hyperplasia and monocyte chemotactic protein-1 expression after balloon injury in cholesterol-fed rabbits,” Journal of Cellular Biochemistry, vol. 283, article 484, 2001. View at Google Scholar
  5. L. Zhou, Z. Zuo, and M. S. S. Chow, “Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use,” Journal of Clinical Pharmacology, vol. 45, no. 12, pp. 1345–1359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Adams Jr., M. Wall, and C. Garcia, “Salvia columbariae contains tanshinones,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 107–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. W. Kwan, K. W. To, W. M. Lau, and S. H. Tsang, “Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats,” European Journal of Pharmacology, vol. 365, pp. 241–251, 1999. View at Google Scholar
  8. N. Teramoto, “Physiological roles of ATP-sensitive K+ channels in smooth muscle,” Journal of Physiology, vol. 572, no. 3, pp. 617–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-C. Tsai, T.-Y. Lai, W.-C. Huang, I.-M. Liu, and J.-T. Cheng, “Inhibitory effects of potassium channel blockers on tetramethylpyrazine-induced relaxation of rat aortic strip in vitro,” Life Sciences, vol. 71, no. 11, pp. 1321–1330, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. K.-L. Wong, P. Chan, W.-C. Huang et al., “Effect of tetramethylpyrazine on potassium channels to lower calcium concentration in cultured aortic smooth muscle cells,” Clinical and Experimental Pharmacology and Physiology, vol. 30, no. 10, pp. 793–798, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Wang, S. H. Sha, W. Lesniak, and J. Schacht, “Tanshinone (Salviae miltiorrhizae extract) preparations attenuate aminoglycoside-induced free radical formation in vitro and cytotoxicity in vivo,” Antimicrobial Agents and Chemotherapy, vol. 47, pp. 1836–1841, 2003. View at Google Scholar
  12. M. Xue, Y. Cui, H. Q. Wang, Z. Y. Hu, and B. Zhang, “Reversed phase liquid chromatographic determination of cryptotanshinone and its active metabolite in pig plasma and urine,” Journal of Pharmaceutical and Biomedical Analysis, vol. 21, pp. 207–213, 1999. View at Google Scholar
  13. W. F. Jackson, “Ion channels and vascular tone,” Hypertension, vol. 35, no. 1, pp. 173–178, 2000. View at Google Scholar · View at Scopus
  14. S. G. Haworth, “Role of the endothelium in pulmonary arterial hypertension,” Vascular Pharmacology, vol. 45, no. 5, pp. 317–325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. D. Kim, F. A. Sánchez, R. G. Durán, T. Kanetaka, and W. N. Durán, “Endothelial nitric oxide synthase is a molecular vascular target for the Chinese herb Danshen in hypertension,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, pp. H2131–H2137, 2007. View at Google Scholar
  16. S. Sonkusare, P. T. Palade, J. D. Marsh, S. Telemaque, A. Pesic, and N. J. Rusch, “Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications,” Vascular Pharmacology, vol. 44, no. 3, pp. 131–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. N. B. Standen and J. M. Quayle, “K+ channel modulation in arterial smooth muscle,” Acta Physiologica Scandinavica, vol. 164, no. 4, pp. 549–557, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Quast, “Do the K+ channel openers relax smooth muscle by opening K+ channels?” Trends in Pharmacological Sciences, vol. 14, no. 9, pp. 332–337, 1993. View at Google Scholar · View at Scopus
  19. P. N. Strong, “Potassium channel toxins,” Pharmacology and Therapeutics, vol. 46, no. 1, pp. 137–162, 1990. View at Google Scholar · View at Scopus
  20. M. Sollini, M. Frieden, and J.-L. Bény, “Charybdotoxin-sensitive small conductance KCa channel activated by bradykinin and substance P in endothelial cells,” British Journal of Pharmacology, vol. 136, no. 8, pp. 1201–1209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gibson, I. McFadzean, P. Wallace, and C. P. Wayman, “Capacitative Ca2+ entry and the regulation of smooth muscle tone,” Trends in Pharmacological Sciences, vol. 19, no. 7, pp. 266–269, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. F. F. Lam, J. H. Yeung, J. H. Cheung, and P. M. Or, “Pharmacological evidence for calcium channel inhibition by Danshen (Salvia miltiorrhiza) on rat isolated femoral artery,” Journal of Cardiovascular Pharmacology, vol. 47, pp. 139–145, 2006. View at Google Scholar
  23. K. Kuba and M. Nohmi, “Role of ion conductance changes and of the sodium-pump in adrenaline-induced hyperpolarization of rat diaphragm muscle fibres,” British Journal of Pharmacology, vol. 91, no. 3, pp. 671–681, 1987. View at Google Scholar · View at Scopus
  24. S. A. Jones, M. J. Morton, M. Hunter, and M. R. Boyett, “Expression of TASK-1, a pH-sensitive twin-pore domain K+ channel, in rat myocytes,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 283, no. 1, pp. H181–H185, 2002. View at Google Scholar · View at Scopus
  25. H. Kinoshita, T. Kakutani, H. Iranami, and Y. Hatano, “The role of oxygen-derived free radicals in augmented relaxations to levcromakalim in the aorta from hypertensive rats,” Japanese Journal of Pharmacology, vol. 85, pp. 29–33, 2001. View at Google Scholar
  26. S. J. Jeon, K. H. Son, Y. S. Kim, Y. H. Choi, and H. P. Kim, “Inhibition of prostaglandin and nitric oxide production in lipopolysaccharide-treated RAW 264.7 cells by tanshinones from the roots of Salvia miltiorrhiza bunge,” Archives of Pharmacal Research, vol. 31, no. 6, pp. 758–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-Y. Lee, D.-Y. Choi, and E.-R. Woo, “Inhibition of osteoclast differentiation by tanshinones from the root of Salvia miltiorrhiza Bunge,” Archives of Pharmacal Research, vol. 28, no. 8, pp. 909–913, 2005. View at Google Scholar · View at Scopus
  28. N. S. Cook, “The pharmacology of potassium channels and their therapeutic potential,” Trends in Pharmacological Sciences, vol. 9, no. 1, pp. 21–28, 1988. View at Google Scholar · View at Scopus