Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 393752, 6 pages
http://dx.doi.org/10.1155/2011/393752
Research Article

Description of a Sulfitobacter Strain and Its Extracellular Cyclodipeptides

1Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
2Department of Clinical Laboratory, First Affiliated Hospital of Yangtze University, No. 8 Hangkong Road, Hubei Jingzhou 434100, China

Received 14 January 2011; Accepted 16 May 2011

Copyright © 2011 Cong Long et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Gulder and B. S. Moore, “Chasing the treasures of the sea—bacterial marine natural products,” Current Opinion in Microbiology, vol. 12, no. 3, pp. 252–260, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Y. Sorokin, “Sulfitobacter pontiacus gen. nov., sp. nov. a new heterotrophic bacterium from the black sea, specialized on sulfite oxidation,” Microbiology, vol. 64, pp. 354–364, 1995. View at Google Scholar
  3. R. Pukall, D. Buntefuss, A. Frühling et al., “Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria,” International Journal of Systematic Bacteriology, vol. 49, no. 2, pp. 513–519, 1999. View at Google Scholar · View at Scopus
  4. J. A. R. Park, J. W. Bae, Y. D. Nam et al., “Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the east sea, Korea,” International Journal of Systematic & Evolutionary Microbiology, vol. 57, no. 4, pp. 692–695, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. H. Yoon, S. J. Kang, M. H. Lee, and T. K. Oh, “Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the east sea in Korea, transfer of staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter,” International Journal of Systematic & Evolutionary Microbiology, vol. 57, no. 8, pp. 1788–1792, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. H. Yoon, SO. J. Kang, and T. K. Oh, “Sulfitobacter marinus sp. nov., isolated from seawater of the east sea in Korea,” International Journal of Systematic & Evolutionary Microbiology, vol. 57, no. 2, pp. 302–305, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. E. P. Ivanova, N. M. Gorshkova, T. Sawabe et al., “Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina),” International Journal of Systematic & Evolutionary Microbiology, vol. 54, no. 2, pp. 475–480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Labrenz, B. J. Tindall, P. A. Lawson, M. D. Collins, P. Schumann, and P. Hirsch, “Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake,” International Journal of Systematic & Evolutionary Microbiology, vol. 50, no. 1, pp. 303–313, 2000. View at Google Scholar · View at Scopus
  9. V. I. Svetashev, M. V. Vysotskii, E. P. Ivan ova, and V. V. Mikhailov, “Cellular fatty acids of Alteromonas species,” Systematic & Applied Microbiology, vol. 18, no. 1, pp. 37–43, 1995. View at Google Scholar · View at Scopus
  10. F. A. Rainey, N. Ward-Rainey, R. M. Kroppenstedt, and E. Stackebrandt, “The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov,” International Journal of Systematic Bacteriology, vol. 46, no. 4, pp. 1088–1092, 1996. View at Google Scholar · View at Scopus
  11. S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004. View at Google Scholar · View at Scopus
  12. M. Mesbah, U. Premachandran, and W. B. Whitman, “Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography,” International Journal of Systematic Bacteriology, vol. 39, pp. 159–167, 1989. View at Google Scholar
  13. D. E. Nitecki, B. Halpern, and J. W. Westley, “A simple route to sterically pure diketopiperazines,” Journal of Organic Chemistry, vol. 33, no. 2, pp. 864–866, 1968. View at Google Scholar · View at Scopus
  14. W. Pickenhagen and P. Dietrich, “Identification of the bitter principle of Cocoa,” Helvetica Chimica Acta, vol. 58, no. 4, pp. 1078–1086, 1975. View at Google Scholar · View at Scopus
  15. K. Suzuki, Y. Sasaki, N. Endo, and Y. Mihara, “Acetic acid-catalyzed diketopiperazine synthesis,” Chemical & Pharmaceutical Bulletin, vol. 29, no. 1, pp. 233–237, 1981. View at Google Scholar · View at Scopus
  16. T. Stark and T. Hofmann, “Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao),” Journal of Agricultural & Food Chemistry, vol. 53, no. 18, pp. 7222–7231, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. Tullberg, M. Grøtli, and K. Luthman, “Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating,” Tetrahedron, vol. 62, no. 31, pp. 7484–7491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Wang, “Cyclodipeptides from the roots of Pannax notoginseng,” Natural Product Research & Development, vol. 16, no. 5, pp. 383–386, 2004. View at Google Scholar
  19. V. Ivanova, U. Graefe, R. Schlegel et al., “Isolation and structure elucidation of tyramine and indole alkaloids from antarctic strain Microbispora aerata imbas-11A,” Biotechnology & Biotechnological Equipment, vol. 17, no. 2, pp. 128–133, 2003. View at Google Scholar · View at Scopus
  20. M. Vásquez, C. Grüttner, B. Möeller, and E. R. B. Moore, “Limited selection of sodium channel blocking toxin-producing bacteria from paralytic shellfish toxin-contaminated mussels (Aulacomya ater),” Research in Microbiology, vol. 153, no. 6, pp. 333–338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. W. E. G. Müller, F. Brümmer, R. Batel, I. M. Müller, and H. C. Schrüder, “Molecular biodiversity case study: Porifera (sponges),” Naturwissenschaften, vol. 90, no. 3, pp. 103–120, 2003. View at Google Scholar · View at Scopus
  22. O. G. Brakstad and A. G. G. L ødeng, “Microbial diversity during biodegradation of crude oil in seawater from the North Sea,” Microbial Ecology, vol. 49, no. 1, pp. 94–103, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. I. Wagner-Döbler, H. Rheims, A. Felske et al., “Oceanibulbus indolifex gen. nov., sp. nov., a north sea alphaproteobacterium that produces bioactive metabolites,” International Journal of Systematic & Evolutionary Microbiology, vol. 54, no. 4, pp. 1177–1184, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. B. Martins and I. Carvalho, “Diketopiperazines: biological activity and synthesis,” Tetrahedron, vol. 63, no. 40, pp. 9923–9932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Adamczeski, E. Quinoa, and P. Crews, “Novel sponge-derived amino acids. 5. Structures, stereochemistry, and synthesis of several new heterocycles,” Journal of the American Chemical Society, vol. 111, no. 2, pp. 647–654, 1989. View at Google Scholar · View at Scopus
  26. G. Degrassi, C. Aguilar, M. Bosco, S. Zahariev, S. Pongor, and V. Venturi, “Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors,” Current Microbiology, vol. 45, no. 4, pp. 250–254, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus