Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 418597, 7 pages
http://dx.doi.org/10.1093/ecam/nep002
Original Article

Alstonine as an Antipsychotic: Effects on Brain Amines and Metabolic Changes

1Laboratório de Etnofamacologia, ICBS, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500/202, 90050-170 Porto Alegre, RS, Brazil
2Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, Brazil. Av. Ipiranga, 2752, 1° andar, 90610-000 Porto Alegre, RS, Brazil
3Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, USP, São Paulo-SP 05508-900, Brazil
4International Centre for Ethnomedicine and Drug Development, University of Nigeria, Nsukka, Nigeria
5Bioresources Development and Conservation Programme, University of Nigeria, Nsukka, Nigeria

Received 4 August 2008; Accepted 12 January 2009

Copyright © 2011 Viviane M. Linck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Miyamoto, G. E. Duncan, C. E. Marx, and J. A. Lieberman, “Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs,” Molecular Psychiatry, vol. 10, no. 1, pp. 79–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. T. Compton and A. H. Miller, “Antipsychotic-induced hyperprolactinemia and sexual dysfunction,” Psychopharmacology Bulletin, vol. 36, no. 1, pp. 143–164, 2002. View at Google Scholar · View at Scopus
  3. J. Kane, G. Honigfeld, J. Singer, and H. Meltzer, “Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine,” Archives of General Psychiatry, vol. 45, no. 9, pp. 789–796, 1988. View at Google Scholar · View at Scopus
  4. J. A. Lieberman, T. Scott Stroup, J. P. McEvoy et al., “Effectiveness of antipsychotic drugs in patients with chronic schizophrenia,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1209–1223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. B. Allison, J. L. Mentore, M. Heo et al., “Antipsychotic-induced weight gain: a comprehensive research synthesis,” American Journal of Psychiatry, vol. 156, no. 11, pp. 1686–1696, 1999. View at Google Scholar · View at Scopus
  6. D. S. Dwyer, “Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport,” Proteins, vol. 42, no. 4, pp. 531–541, 2001. View at Google Scholar · View at Scopus
  7. D. S. Dwyer and D. Donohoe, “Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake,” Pharmacology Biochemistry and Behavior, vol. 75, no. 2, pp. 255–260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Schultz, S. W. North, and C. G. Shields, “Schizophrenia: a review,” American Family Physician, vol. 75, no. 12, pp. 1821–1829, 2007. View at Google Scholar · View at Scopus
  9. A. N. Elias and H. Hofflich, “Abnormalities in glucose metabolism in patients with schizophrenia treated with atypical antipsychotic medications,” American Journal of Medicine, vol. 121, no. 2, pp. 98–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. M. Gardner, R. J. Baldessarini, and P. Waraich, “Modern antipsychotic drugs: a critical overview,” Canadian Medical Association Journal, vol. 172, no. 13, pp. 1703–1711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. K. D. Alex and E. A. Pehek, “Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission,” Pharmacology and Therapeutics, vol. 113, no. 2, pp. 296–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Abi-Dargham, “Do we still believe in the dopamine hypothesis? New data bring new evidence,” International Journal of Neuropsychopharmacology, vol. 7, supplement 1, pp. S1–S5, 2004. View at Google Scholar · View at Scopus
  13. L. Costa-Campos, E. Elisabetsky, D. R. Lara et al., “Antipsychotic profile of alstonine: ethnopharmacology of a traditional Nigerian botanical remedy,” Anais da Academia Brasileira de Ciências, vol. 71, no. 2, pp. 189–201, 1999. View at Google Scholar · View at Scopus
  14. L. Costa-Campos, D. R. Lara, D. S. Nunes, and E. Elisabetsky, “Antipsychotic-like profile of alstonine,” Pharmacology Biochemistry and Behavior, vol. 60, no. 1, pp. 133–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Costa-Campos, S. C. Dassoler, A. P. Rigo, M. Iwu, and E. Elisabetsky, “Anxiolytic properties of the antipsychotic alkaloid alstonine,” Pharmacology Biochemistry and Behavior, vol. 77, no. 3, pp. 481–489, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. V. de Moura Linck, A. P. Herrmann, G. C. Goerck et al., “The putative antipsychotic alstonine reverses social interaction withdrawal in mice,” Progress in Neuropsychopharmacology and Biological Psychiatry, vol. 32, no. 6, pp. 1449–1452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. O. Okunji, M. M. Iwu, Y. Ito, and P. L. Smith, “Preparative separation of indole alkaloids from the rind of Picralima nitida (Stapf) T. Durand & H. Durand by pH-zone-refining countercurrent chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 28, no. 5, pp. 775–783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Ito, “High-speed countercurrent chromatography,” in High-Speed Countercurrent Chromatography Chemical Analysis, Y. Ito and W. D. Conway, Eds., pp. 225–263, Wiley-Interscience, New York, NY, USA, 1996. View at Google Scholar
  19. K. Shinomiya, J. M. Menet, H. M. Fales, and Y. Ito, “Studies on a new cross-axis coil planet centrifuge for performing countercurrent chromatography. 1. Design of the apparatus, retention of the stationary-phase, and efficiency in the separation of proteins with polymer phase systems,” Journal of Chromatography, vol. 644, pp. 215–229, 1993. View at Google Scholar
  20. L. F. Felicio, J. C. Florio, L. H. Sider, P. E. Cruz-Casallas, and R. S. Bridges, “Reproductive experience increases striatal and hypothalamic dopamine levels in pregnant rats,” Brain Research Bulletin, vol. 40, no. 4, pp. 253–256, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Doretto, M. Oliveira-e-Silva, D. L. Ferreira-Alves, S. G. Pires, N. Garcia-Cairasco, and A. M. Reis, “Effect of lactation on the expression of audiogenic seizures: association with plasma prolactin profiles,” Epilepsy Research, vol. 54, no. 2-3, pp. 109–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Costa-Campos, M. Iwu, and E. Elisabetsky, “Lack of pro-convulsant activity of the antipsychotic alkaloid alstonine,” Journal of Ethnopharmacology, vol. 93, pp. 307–310, 2004. View at Google Scholar
  23. B. H. C. Westerink, “Sequence and significance of dopamine metabolism in the rat brain,” Neurochemistry International, vol. 7, no. 2, pp. 221–227, 1985. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Haleem, F. Batool, N. H. Khan et al., “Differences in the effects of haloperidol and clozapine on brain serotonin and dopamine metabolism and on tests related to extrapyramidal functions in rats,” Medical Science Monitor, vol. 8, no. 9, pp. BR354–BR361, 2002. View at Google Scholar · View at Scopus
  25. G. Lucas and U. Spampinato, “Role of striatal serotonin(2A) and serotonin(2C) receptor subtypes in the control of in vivo dopamine outflow in the rat striatum,” Journal of Neurochemistry, vol. 74, no. 2, pp. 693–701, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Di Matteo, M. Cacchio, C. Di Giulio, and E. Esposito, “Role of serotonin2C receptors in the control of brain dopaminergic function,” Pharmacology Biochemistry and Behavior, vol. 71, no. 4, pp. 727–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. P. De Deurwaerdère, S. Navailles, K. A. Berg, W. P. Clarke, and U. Spampinato, “Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens,” Journal of Neuroscience, vol. 24, no. 13, pp. 3235–3241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Carlsson, N. Waters, S. Holm-Waters, J. Tedroff, M. Nilsson, and M. L. Carlsson, “Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 237–260, 2001. View at Google Scholar
  29. E. Elisabetsky and L. Costa-Campos, “The alkaloid alstonine: a review of its pharmacological properties,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 1, pp. 39–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. V. L. Arvanov and R. Y. Wang, “A selective 5-HT2A receptor antagonist and a potential antipsychotic drug, facilitates N-methyl-d-aspartatereceptor mediated neurotransmission in the medial prefrontal cortical neurons in vitro,” Neuropsychopharmacology, vol. 18, no. 3, pp. 197–209, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. C. F. Spurney, S. M. Baca, A. M. Murray, G. E. Jaskiw, J. E. Kleinman, and T. M. Hyde, “Differential effects of haloperidol and clozapine on ionotropic glutamate receptors in rats,” Synapse, vol. 34, no. 4, pp. 266–276, 1999. View at Google Scholar · View at Scopus
  32. Y. E. Savoy, M. A. Ashton, M. W. Miller et al., “Differential effects of various typical and atypical antipsychotics on plasma glucose and insulin levels in the mouse: Evidence for the involvement of sympathetic regulation,” Schizophrenia Bulletin, vol. 36, no. 2, pp. 410–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Millan, F. Loiseau, A. Dekeyne, A. Gobert, G. Flik, T. I. Cremers et al., “S33138 (N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1] benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenyl-acetamide), a preferential dopamine D3 versus D2 receptor antagonist and potential antipsychotic agent: III. Actions in models of therapeutic activity and induction of side effects,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, pp. 1212–1226, 2008. View at Google Scholar
  34. J. P. Rung, A. Carlsson, K. R. Markinhuhta, and M. L. Carlsson, “(+)-MK801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 29, pp. 827–832, 2005. View at Google Scholar
  35. C. Rourke, K. R. Starr, C. Reavill, S. Fenwick, K. Deadman, and D. N. C. Jones, “Effects of the atypical antipsychotics olanzapine and risperidone on plasma prolactin levels in male rats: a comparison with clinical data,” Psychopharmacology, vol. 184, no. 1, pp. 107–114, 2006. View at Publisher · View at Google Scholar · View at Scopus