Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 468529, 8 pages
http://dx.doi.org/10.1093/ecam/neq025
Original Article

Biological Activities of Chinese Propolis and Brazilian Propolis on Streptozotocin-Induced Type 1 Diabetes Mellitus in Rats

1College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
2Zhejiang Traditional Chinese Medicine University, Hangzhou 310053, China
3Zhejiang Economic & Trade Polytechnic, Hangzhou 310018, China

Received 4 February 2009; Accepted 8 March 2010

Copyright © 2011 Wei Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995. View at Google Scholar
  2. V. S. Bankova, S. L. De Castro, and M. C. Marcucci, “Propolis: recent advances in research on chemistry and plant origin,” Apidologie, vol. 31, pp. 3–15, 2000. View at Google Scholar
  3. J. M. Sforcin, “Propolis and the immune system: a review,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. A. H. Banskota, Y. Tezuka, and S. Kadota, “Recent progress in pharmacological research of propolis,” Phytotherapy Research, vol. 15, no. 7, pp. 561–571, 2001. View at Publisher · View at Google Scholar · View at PubMed
  5. V. Bankova, “Recent trends and important developments in propolis research,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 29–32, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. Chinese Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China 2005, vol. 1, Chemical Industry Press, Beijing, China, 2005.
  7. WHO, “Fact sheet No 312 Diabetes,” November 2009, http://www.who.int/mediacentre/factsheets/fs312/en/print.html.
  8. American Diabetes Association, “Economic costs of diabetes in the U.S in 2007,” Diabetes Care, vol. 31, pp. 596–615, 2008. View at Google Scholar
  9. P. K. Mukherjee, K. Maiti, K. Mukherjee, and P. J. Houghton, “Leads from Indian medicinal plants with hypoglycemic potentials,” Journal of Ethnopharmacology, vol. 106, no. 1, pp. 1–28, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. A. Andrade-Cetto and M. Heinrich, “Mexican plants with hypoglycaemic effect used in the treatment of diabetes,” Journal of Ethnopharmacology, vol. 99, no. 3, pp. 325–348, 2005. View at Publisher · View at Google Scholar · View at PubMed
  11. C.-T. Liu, L.-Y. Sheen, and C.-K. Lii, “Does garlic have a role as an antidiabetic agent?” Molecular Nutrition and Food Research, vol. 51, no. 11, pp. 1353–1364, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. Z. S. Hakim, B. K. Patel, and R. K. Goyal, “Effects of chronic ramipril treatment in streptozotocin-induced diabetic rats,” Indian Journal of Physiology and Pharmacology, vol. 41, no. 4, pp. 353–360, 1997. View at Google Scholar
  13. H. Lu, D. Kraut, L. C. Gerstenfeld, and D. T. Graves, “Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation,” Endocrinology, vol. 144, pp. 346–352, 2003. View at Google Scholar
  14. D. A. Rees and J. C. Alcolado, “Animal models of diabetes mellitus,” Diabetic Medicine, vol. 22, no. 4, pp. 359–370, 2005. View at Publisher · View at Google Scholar · View at PubMed
  15. N. Karachalias, R. Babaei-Jadidi, N. Ahmed, and P. J. Thornalley, “Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats,” Biochemical Society Transactions, vol. 31, no. 6, pp. 1423–1425, 2003. View at Google Scholar
  16. H. Gonzalez-Navarro, D. J. Burks, and V. Andres, “Murine models to investigate the influence of diabetic metabolism on the development of atherosclerosis and restenosis,” Frontiers in Bioscience, vol. 12, pp. 4439–4455, 2007. View at Publisher · View at Google Scholar
  17. H. U. Fuliang, H. R. Hepburn, H. Xuan, M. Chen, S. Daya, and S. E. Radloff, “Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus,” Pharmacological Research, vol. 51, no. 2, pp. 147–152, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. K. Murata, K. Yatsunami, E. Fukuda et al., “Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes,” Alternative Therapies In Health And Medicine, vol. 10, pp. 78–79, 2004. View at Google Scholar
  19. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993. View at Google Scholar
  20. The UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet, vol. 352, pp. 837–853, 1998. View at Google Scholar
  21. C Stettler, S Allemann, P Jüni et al., “Glycemic control and macrovascular disease in type 1 and 2 diabetes mellitus: meta-analysis of randomized trials,” American Heart Journal, vol. 152, pp. 27–38, 2006. View at Google Scholar
  22. D. Giugliano, A. Ceriello, and K. Esposito, “Glucose metabolism and hyperglycemia,” American Journal of Clinical Nutrition, vol. 87, no. 1, pp. 217S–222S, 2008. View at Google Scholar
  23. The ADVANCE Collaborative Group, “Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 358, pp. 2560–2572, 2008. View at Google Scholar
  24. T. Matsui, S. Ebuchi, T. Fujise et al., “Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid,” Biological and Pharmaceutical Bulletin, vol. 27, no. 11, pp. 1797–1803, 2004. View at Publisher · View at Google Scholar
  25. H. Z. Xuan, Effects of propolis and its possible mechanism on diabetes mellitus in SD rats, M.S. thesis, Zhejiang University, 2003.
  26. J. Østergaard, T. K. Hansen, S. Thiel, and A. Flyvbjerg, “Complement activation and diabetic vascular complications,” Clinica Chimica Acta, vol. 361, pp. 10–19, 2005. View at Google Scholar
  27. S. K. Nirala, M. Bhadauria, S. Shukla et al., “Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity,” Fundamental and Clinical Pharmacology, vol. 22, no. 4, pp. 403–415, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Bhadauria, S. K. Nirala, and S. Shukla, “Multiple treatment of propolis extract ameliorates carbon tetrachloride induced liver injury in rats,” Food and Chemical Toxicology, vol. 46, no. 8, pp. 2703–2712, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. S. K. Nirala and M. Bhadauria, “Propolis reverses acetaminophen induced acute hepatorenal alterations: a biochemical and histopathological approach,” Archives of Pharmacal Research, vol. 31, no. 4, pp. 451–461, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. S. Özen, Ö. Akyol, M. Iraz et al., “Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats,” Journal of Applied Toxicology, vol. 24, no. 1, pp. 27–35, 2004. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005. View at Publisher · View at Google Scholar
  32. G. Wolf, “New insights into the pathophysiology of diabetic nephrophathy: from haemodynamics to molecular pathology,” European Journal of Clinical Investigation, vol. 34, no. 12, pp. 785–796, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. L. Franzini, D. Ardigò, and I. Zavaroni, “Dietary antioxidants and glucose metabolism,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 4, pp. 471–476, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. J. Varvařovská, J. Racek, R. Štětina et al., “Aspects of oxidative stress in children with type 1 diabetes mellitus,” Biomedicine and Pharmacotherapy, vol. 58, no. 10, pp. 539–545, 2004. View at Publisher · View at Google Scholar · View at PubMed
  35. I. Jasprica, A. Mornar, Z. Debeljak et al., “In vivo study of propolis supplementation effects on antioxidative status and red blood cells,” Journal of Ethnopharmacology, vol. 110, no. 3, pp. 548–554, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. M. Kanbur, G. Eraslan, and S. Silici, “Antioxidant effect of propolis against exposure to propetamphos in rats,” Ecotoxicology and Environmental Safety, vol. 72, no. 3, pp. 909–915, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. G. Eraslan, M. Kanbur, S. Silici, S. Altinordulu, and M. Karabacak, “Effects of cypermethrin on some biochemical changes in rats: the protective role of propolis,” Experimental Animals, vol. 57, no. 5, pp. 453–460, 2008. View at Publisher · View at Google Scholar
  38. D. Majiene, S. Trumbeckaite, A. Savickas, and A. Toleikis, “Influence of propolis water solution on heart mitochondrial function,” Journal of Pharmacy and Pharmacology, vol. 58, no. 5, pp. 709–713, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. M. Alyane, L. Benguedouar, W. Kebsa, H. N. Boussenane, H. Rouibah, and M. Lahouel, “Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity,” Pakistan Journal of Pharmaceutical Sciences, vol. 21, no. 3, pp. 201–209, 2008. View at Google Scholar
  40. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. M. T. Johnstone and A. Veves, in Contemporary Cardiology: Diabetes and Cardiovascular Disease, pp. 201–224, Humana Press, Totowa, NJ, USA, 2nd edition, 2005.
  42. N. Toda and M. Nakanishi-Toda, “Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 26, no. 3, pp. 205–238, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. S. S. Prabhakar, “Role of nitric oxide in diabetic nephropathy,” Seminars in Nephrology, vol. 24, no. 4, pp. 333–344, 2004. View at Publisher · View at Google Scholar
  44. N. Paulino, C. Teixeira, R. Martins et al., “Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis,” Planta Medica, vol. 72, no. 10, pp. 899–906, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. M. E. Molitch, “Management of dyslipidemias in patients with diabetes and chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 1, no. 5, pp. 1090–1099, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. K. S. Jain, M. K. Kathiravan, R. S. Somani, and C. J. Shishoo, “The biology and chemistry of hyperlipidemia,” Bioorganic and Medicinal Chemistry, vol. 15, no. 14, pp. 4674–4699, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. E. Matsuura, G. R. V. Hughes, and M. A. Khamashta, “Oxidation of LDL and its clinical implication,” Autoimmunity Reviews, vol. 7, no. 7, pp. 558–566, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. R. Shinohara, Y. Ohta, T. Hayashi, and T. Ikeno, “Evaluation of antilipid peroxidative action of propolis ethanol extract,” Phytotherapy Research, vol. 16, no. 4, pp. 340–347, 2002. View at Publisher · View at Google Scholar · View at PubMed
  49. Y. Inokuchi, M. Shimazawa, Y. Nakajima, S. Suemori, S. Mishima, and H. Hara, “Brazilian green propolis protects against retinal damage in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 1, pp. 71–77, 2006. View at Publisher · View at Google Scholar · View at PubMed
  50. A. Sawaya, K. Souza, M. Marcucci, I. Cunha, and M. Shimizu, “Analysis of the composition Brazilian propolis extracts by chromatography and evaluation of their in vitro activity against Gram-positive bacteria,” Brazilian Journal of Microbiology, vol. 35, pp. 104–109, 2004. View at Google Scholar
  51. S. Silici and S. Kutluca, “Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region,” Journal of Ethnopharmacology, vol. 99, pp. 69–73, 2005. View at Google Scholar
  52. É. W. Teixeira, D. Message, G. Negri, A. Salatino, and P. C. Stringheta, “Seasonal variation, chemical composition and antioxidant activity of brazilian propolis samples,” Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 3, pp. 307–315, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. V. Bankova, “Chemical diversity of propolis and the problem of standardization,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 114–117, 2005. View at Publisher · View at Google Scholar · View at PubMed