Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 487543, 8 pages
http://dx.doi.org/10.1155/2011/487543
Research Article

Impact of Intensive Land-Based Fish Culture in Qingdao, China, on the Bacterial Communities in Surrounding Marine Waters and Sediments

1Yellow Sea Fishery Research Institute, Chinese Academy of Fishery Science, 106 Nanjing Road, Shandong, Qingdao 266071, China
2Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2

Received 15 January 2011; Revised 26 May 2011; Accepted 30 June 2011

Copyright © 2011 Qiufen Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. La Rosa, S. Mirto, A. Mazzola, and R. Danovaro, “Differential responses of benthic microbes and meiofauna to fish-farm disturbance in coastal sediments,” Environmental Pollution, vol. 112, no. 3, pp. 427–434, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Elliott, “Biological pollutants and biological pollution—an increasing cause for concern,” Marine Pollution Bulletin, vol. 46, no. 3, pp. 275–280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. McClure, K. L. Hammell, I. R. Dohoo, P. Nerette, and L. J. Hawkins, “Assessment of infectious salmon anaemia virus prevalence for different groups of farmed Atlantic salmon, Salmo salar L., in New Brunswick,” Journal of Fish Diseases, vol. 27, no. 7, pp. 375–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Villanueva, H. T. Yap, and M. N. E. Montaño, “Intensive fish farming in the Philippines is detrimental to the reef-building coral Pocillopora damicornis,” Marine Ecology Progress Series, vol. 316, pp. 165–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Danovaro, M. Armeni, A. Dell'Anno et al., “Small-scale distribution of bacteria, enzymatic activities, and organic matter in coastal sediments,” Microbial Ecology, vol. 42, no. 2, pp. 177–185, 2001. View at Google Scholar · View at Scopus
  6. B. A. Yoza, R. M. Harada, C. C. Nihous, Q. X. Li, and S. M. Masutani, “Impact of mariculture on microbial diversity in sediments near open ocean farming of Polydactylus sexfilis,” Ecological Indicators, vol. 7, no. 1, pp. 108–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. I. Amann, W. Ludwig, and K. H. Schleifer, “Phylogenetic identification and in situ detection of individual microbial cells without cultivation,” Microbiological Reviews, vol. 59, no. 1, pp. 143–169, 1995. View at Google Scholar · View at Scopus
  8. Q. Li, B. Chen, K. Qu et al., “Variation of bacteria numbers in fish-shrimp mix-culturing ecosystem,” Chinese Journal of Applied Ecology, vol. 13, no. 6, pp. 731–734, 2002. View at Google Scholar
  9. G. Muyzer, E. C. Waal, and A. G. Uitterlinden, “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 59, no. 3, pp. 695–700, 1993. View at Google Scholar · View at Scopus
  10. D. Juck, B. T. Driscoll, T. C. Charles, and C. W. Greer, “Effect of experimental contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial communities,” FEMS Microbiology Ecology, vol. 43, no. 2, pp. 255–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. E. Freitag, L. Chang, and J. I. Presser, “Changes in the community structure and activity of β-proteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient,” Environmental Microbiology, vol. 8, no. 4, pp. 684–696, 2006. View at Google Scholar
  12. R. Sandaa, T. Magnesen, L. Torkildsen, and O. Bergh, “Characterisation of the bacterial community associated with early stages of great scallop (Pecten maximus), using denaturing gradient gel electrophoresis (DGGE),” Systematic and Applied Microbiology, vol. 26, no. 2, pp. 302–311, 2003. View at Publisher · View at Google Scholar
  13. P. Luo, C. Hu, Z. Xie et al., “PCR-DGGE analysis of bacterial community composition in brackish water Litopenaeus vannamei system,” Journal of Tropical Oceanography, vol. 25, no. 2, pp. 49–50, 2006. View at Google Scholar
  14. S. Chen, W. Bao, B. Li et al., “Pollution situation of Rushan Bay and analysis of heterotrophic microorganisms,” Journal of Ocean College of Shandong, vol. 17, no. 4, pp. 86–94, 1987. View at Google Scholar
  15. N. Fortin, D. Beaumier, K. Lee, and C. W. Greer, “Soil washing improves the recovery of total community DNA from polluted and high organic content sediments,” Journal of Microbiological Methods, vol. 56, no. 2, pp. 181–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. J. Purdy, D. B. Nedwell, and T. M. Embley, “Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting antarctic sediments,” Applied and Environmental Microbiology, vol. 69, no. 6, pp. 3181–3191, 2003. View at Google Scholar · View at Scopus
  17. H. Cai, Y. Sun, and X. Zhang, “Environmental impact of cage aquaculture and the aquaculture environmental capacity in Xiangshan Harbor,” Techniques and Equipment for Environmental Pollution Control, vol. 7, no. 11, pp. 71–76, 2006. View at Google Scholar
  18. H. Asami, M. Aida, and K. Watanabe, “Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture,” Applied and Environmental Microbiology, vol. 71, no. 6, pp. 2925–2933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Staufenberger, V. Thiel, J. Wiese, and J. F. Imhoff, “Phylogenetic analysis of bacteria associated with Laminaria saccharina,” FEMS Microbiology Ecology, vol. 64, no. 1, pp. 65–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. L. Skovhus, C. Holmstrom, S. Kjelleberg, and I. Dahllof, “Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples,” FEMS Microbiology Ecology, vol. 61, no. 2, pp. 348–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Sawabe, H. Makino, M. Tatsumi et al., “Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica,” International Journal of Systematic Bacteriology, vol. 48, no. 3, pp. 769–774, 1998. View at Google Scholar · View at Scopus
  22. A. P. Negri, N. S. Webster, R. T. Hill, and A. J. Heyward, “Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae,” Marine Ecology Progress Series, vol. 223, pp. 121–131, 2001. View at Google Scholar · View at Scopus
  23. B. Migue and M. P. Combarro, “Bacteria associated with sardine (Sardinapil chardus) eggs in a natural environment (Ria de Vigo, Galicia, north western Spain),” FEMS Microbiology Ecology, vol. 44, no. 3, pp. 329–334, 2003. View at Publisher · View at Google Scholar
  24. J. P. Gray and R. P. Herwig, “Phylogenetic analysis of the bacterial communities in marine sediments,” Applied and Environmental Microbiology, vol. 62, no. 11, pp. 4049–4059, 1996. View at Google Scholar · View at Scopus
  25. E. P. vanova, Y. V. Alexeeva, S. Flavier et al., “Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 3, pp. 705–711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. O. I. Nedashkovskaya, S. B. Kim, M. Vancanneyt et al., “Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 1, pp. 161–167, 2006. View at Publisher · View at Google Scholar · View at Scopus