Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 529053, 7 pages
http://dx.doi.org/10.1093/ecam/nep031
Original Article

Analyzing Serum-Stimulated Prostate Cancer Cell Lines After Low-Fat, High-Fiber Diet and Exercise Intervention

1Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
2Department of Urology, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

Received 9 October 2008; Accepted 27 March 2009

Copyright © 2011 Sherry Soliman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2006,” CA: A Cancer Journal for Clinicians, vol. 56, no. 2, pp. 106–130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. W. Hsing, L. Tsao, and S. S. Devesa, “International trends and patterns of prostate cancer incidence and mortality,” International Journal of Cancer, vol. 85, no. 1, pp. 60–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. S. Muir, J. Nectoux, and J. Staszewski, “The epidemiology of prostatic cancer. Geographical distribution and time-trends,” Acta Oncologica, vol. 30, no. 2, pp. 133–140, 1991. View at Google Scholar · View at Scopus
  4. H. Shimizu, R. K. Ross, L. Bernstein, R. Yatani, B. E. Henderson, and T. M. Mack, “Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County,” British Journal of Cancer, vol. 63, no. 6, pp. 963–966, 1991. View at Google Scholar · View at Scopus
  5. M. A. Moyad, “Dietary fat reduction to reduce prostate cancer risk: controlled enthusiasm, learning a lesson from breast or other cancers, and the big picture,” Urology, vol. 59, no. 4, supplement 1, pp. 51–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Thune and A.-S. Furberg, “Physical activity and cancer risk: dose-response and cancer, all sites and site-specific,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, supplement, pp. S530–S550, 2001. View at Google Scholar · View at Scopus
  7. I. M. Lee, “Physical activity and cancer prevention–data from epidemiologic studies,” Medicine & Science in Sports & Exercise, vol. 35, pp. 1823–1827, 2003. View at Google Scholar
  8. T. H. Ngo, R. J. Barnard, C. N. Tymchuk, P. Cohen, and W. J. Aronson, “Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States),” Cancer Causes and Control, vol. 13, pp. 929–935, 2002. View at Google Scholar
  9. C. N. Tymchuk, R. J. Barnard, D. Heber, and W. J. Aronson, “Evidence of an inhibitory effect of diet and exercise on prostate cancer cell growth,” Journal of Urology, vol. 166, no. 3, pp. 1185–1189, 2001. View at Google Scholar · View at Scopus
  10. C. N. Tymchuk, R. J. Barnard, T. H. Ngo, and W. J. Aronson, “The role of testosterone, estradiol, and insulin in diet- and exercise-induced reductions in serum-stimulated prostate cancer cell growth in vitro,” Nutrition and Cancer, vol. 42, no. 1, pp. 112–116, 2002. View at Google Scholar · View at Scopus
  11. C. K. Roberts, D. Won, S. Pruthi, S. S. Lin, and R. J. Barnard, “Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men,” Diabetes Research and Clinical Practice, vol. 73, pp. 249–259, 2006. View at Google Scholar
  12. P. S. Leung, W. J. Aronson, T. H. Ngo, L. A. Golding, and R. J. Barnard, “Exercise enhancement of the p53 protein product in LNCaP prostate cancer cells,” Journal of Applied Physiology, vol. 96, pp. 450–454, 2004. View at Google Scholar
  13. N. Breslow, C. W. Chan, G. Dhom et al., “Latent carcinoma of prostate at autopsy in seven areas. The International Agency for Research on Cancer, Lyons, France,” International Journal of Cancer, vol. 20, pp. 680–688, 1977. View at Google Scholar
  14. R. J. Barnard, W. J. Aronson, C. N. Tymchuk, and T. H. Ngo, “Prostate cancer: another aspect of the insulin-resistance syndrome?” Obesity Reviews, vol. 3, no. 4, pp. 303–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. W. G. Nelson, A. M. De Marzo, and W. B. Isaacs, “Prostate cancer,” The New England Journal of Medicine, vol. 349, no. 4, pp. 366–381, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. E. König, T. Senge, E. P. Allhoff, and W. König, “Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer,” Prostate, vol. 58, no. 2, pp. 121–129, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. Zhu, S. H. Baek, E. M. Bourk et al., “Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway,” Cell, vol. 124, no. 3, pp. 615–629, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. T. A. Nguyen, H. Satoh, S. Favelyukis et al., “JNK and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35361–35371, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. T. Nguyen, S. Favelyukis, A. K. Nguyen, D. Reichart, P. A. Scott, A. Jenn et al., “A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways,” The Journal of Biological Chemistry, vol. 282, pp. 35279–35292, 2007. View at Google Scholar
  20. B. Huang, J. Zhao, J. C. Unkeless, Z. H. Feng, and H. Xiong, “TLR signaling by tumor and immune cells: a double-edged sword,” Oncogene, vol. 27, no. 2, pp. 218–224, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. N. Kobayashi, R. J. Barnard, S. M. Henning et al., “Effect of altering dietary omega-6:omega-3 fatty acid ratios on prostate cancer membrane composition, cycloozygenase-2 and prostaglandin E-2,” Clinical Cancer Research, vol. 12, pp. 4662–4670, 2006. View at Google Scholar
  22. H. Bartsch, J. Nair, and R. W. Owen, “Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers,” Carcinogenesis, vol. 20, pp. 2209–2218, 1999. View at Google Scholar
  23. E. C. Nelson, C. P. Evans, P. C. Mack, R. W. Devere-White, and P. N. Lara Jr., “Inhibition of Akt pathways in the treatment of prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 10, no. 4, pp. 331–339, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Y. Shida, T. Igawa, T. Hakariya, H. Sakai, and H. Kanetake, “p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion,” Biochemical and Biophysical Research Communications, vol. 353, no. 3, pp. 744–749, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. L. Heron-Milhavet, M. Karas, C. M. Goldsmith, B. J. Baum, and D. LeRoith, “Insulin-like growth factor-I (IGF-I) receptor activation rescues UV-damaged cells through a p38 signaling pathway. Potential role of the IGF-I receptor in DNA repair,” The Journal of Biological Chemistry, vol. 276, pp. 18185–18192, 2001. View at Google Scholar
  26. L. Héron-Milhavet and D. LeRoith, “Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 15600–15606, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. É. Bálint and K. H. Vousden, “Activation and activities of the p53 tumour suppressor protein,” British Journal of Cancer, vol. 85, no. 12, pp. 1813–1823, 2001. View at Google Scholar · View at Scopus
  28. S. Gurumurthy, K. M. Vasudevan, and V. M. Rangnekar, “Regulation of apoptosis in prostate cancer,” Cancer and Metastasis Reviews, vol. 20, no. 3-4, pp. 225–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. van Bokhoven, M. Varella-Garcia, C. Korch et al., “Molecular characterization of human prostate carcinoma cell lines,” Prostate, vol. 57, no. 3, pp. 205–225, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. D. Ornish, G. Weidner, W. R. Fair et al., “Intensive lifestyle changes may affect the progression of prostate cancer,” Journal of Urology, vol. 174, no. 3, pp. 1065–1069, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. Ornish, M. J. M. Magbanua, G. Weidner et al., “Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 24, pp. 8369–8374, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus