Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 690518, 8 pages
http://dx.doi.org/10.1093/ecam/nep105
Original Article

In Vitro and In Vivo Antibacterial Activity of Punica granatum Peel Ethanol Extract against Salmonella

1College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, 570-749, Republic of Korea
2Department of Pharmacy, College of Pharmacy, Wonkwang University, Republic of Korea
3College of Medicine, Wonkwang University, Jeonbuk 570-749, Republic of Korea
4Department of Oriental Medicine Resources, Sunchon National University, Jeonnam 540-742, Republic of Korea
5Department of Oceanography, Kunsan National University, Jeonbuk 573-701, Republic of Korea

Received 10 December 2008; Accepted 8 July 2009

Copyright © 2011 Jang-Gi Choi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Fink and B. T. Cookson, “Pyroptosis and host cell death responses during Salmonella infection,” Cellular Microbiology, vol. 9, no. 11, pp. 2562–2570, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. A. Grassl, Y. Valdez, K. S. B. Bergstrom, B. A. Vallance, and B. B. Finlay, “Chronic enteric Salmonella infection in mice leads to severe and persistent intestinal fibrosis,” Gastroenterology, vol. 134, no. 3, pp. 768–780, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. P. S. Mead, L. Slutsker, V. Dietz et al., “Food-related illness and death in the United States,” Emerging Infectious Diseases, vol. 5, no. 5, pp. 607–625, 1999. View at Google Scholar · View at Scopus
  4. B. Coburn, G. A. Grassl, and B. B. Finlay, “Salmonella, the host and disease: a brief review,” Immunology and Cell Biology, vol. 85, no. 2, pp. 112–118, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S.-H. Choi, J. H. Woo, J. E. Lee et al., “Increasing incidence of quinolone resistance in human non-typhoid Salmonella enterica isolates in Korea and mechanisms involved in quinolone resistance,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 6, pp. 1111–1114, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. E. Stevenson, K. Gay, T. J. Barrett, F. Medalla, T. M. Chiller, and F. J. Angulo, “Increase in nalidixic acid resistance among non-typhi Salmonella enterica isolates in the United States from 1996 to 2003,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 1, pp. 195–197, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. K. Bhan, R. Bahl, and S. Bhatnagar, “Typhoid and paratyphoid fever,” The Lancet, vol. 366, no. 9487, pp. 749–762, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. W. A. Gebreyes, S. Thakur, P. R. Davies, J. A. Funk, and C. Altier, “Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997–2000,” Journal of Antimicrobial Chemotherapy, vol. 53, pp. 997–1003, 2004. View at Google Scholar
  9. G. G. Perron, G. Bell, and S. Quessy, “Parallel evolution of multidrug-resistance in Salmonella enterica isolated from swine,” FEMS Microbiology Letters, vol. 281, no. 1, pp. 17–22, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. Poppe, K. Ziebell, L. Martin, and K. Allen, “Diversity in antimicrobial resistance and other characteristics among Salmonella typhimurium DT104 isolates,” Microbial Drug Resistance, vol. 8, pp. 107–122, 2002. View at Google Scholar
  11. E. J. Threlfall, L. R. Ward, J. A. Frost, and G. A. Willshaw, “Spread of resistance from food animals to man–the UK experience,” Acta Veterinaria Scandinavica. Supplementum, vol. 93, pp. 63–68, 2000. View at Google Scholar · View at Scopus
  12. F. Aqil, M. S. Khan, M. Owais, and I. Ahmad, “Effect of certain bioactive plant extracts on clinical isolates of beta-lactamase producing methicillin resistant Staphylococcus aureus,” Journal of Basic Microbiology, vol. 45, pp. 106–114, 2005. View at Google Scholar
  13. A. Nostro, L. Cellini, S. Di Bartolomeo et al., “Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori,” Phytotherapy Research, vol. 20, no. 3, pp. 187–190, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. P. Voravuthikunchai, T. Sririrak, S. Limsuwan, T. Supawita, T. Iida, and T. Honda, “Inhibitory effects of active compounds from Punica granatum pericarp on verocytotoxin production by enterohemorrhagic Escherichia coli O157:H7,” Journal of Health Science, vol. 51, no. 5, pp. 590–596, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. P. Singh, M. K. N. Chidambara, and G. K. Jayaprakasha, “Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 81–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Ricci, L. Giamperi, A. Bucchini, and D. Fraternale, “Antioxidant activity of Punica granatum fruits,” Fitoterapia, vol. 77, no. 4, pp. 310–312, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Sánchez-Lamar, G. Fonseca, J. L. Fuentes et al., “Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 416–422, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Related, D. LinksHeber, N. P. Seeram et al., “Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size,” Journal of Agricultural and Food Chemistry, vol. 55, pp. 10050–10054, 2007. View at Google Scholar
  19. H. S. Parmar and A. Kar, “Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones,” Journal of Medicinal Food, vol. 11, no. 2, pp. 376–381, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. M. Aviram, M. Rosenblat, D. Gaitini et al., “Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation,” Clinical Nutrition, vol. 23, pp. 423–433, 2004. View at Google Scholar
  21. H. S. Parmar and A. Kar, “Protective role of Citrus sinensis, Musa paradisiaca, and Punica granatum peels against diet-induced atherosclerosis and thyroid dysfunctions in rats,” Nutrition Research, vol. 27, no. 11, pp. 710–718, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. C. Braga, J. W. Shupp, C. Cummings et al., “Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 335–339, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. S. Naz, R. Siddiqi, S. Ahmad, S. A. Rasool, and S. A. Sayeed, “Antibacterial activity directed isolation of compounds from Punica granatum,” Journal of Food Science, vol. 72, no. 9, pp. M341–M345, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Zhang, B. Zhan, X. Yao, Y. Gao, and J. Shong, “Antiviral activity of tannin from the pericarp of Punica granatum L. against genital Herpes virus in vitro,” Zhongguo Zhong yao za zhi, vol. 20, no. 9, pp. 556–576, 1995. View at Google Scholar · View at Scopus
  25. E. P. Lansky and R. A. Newman, “Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer,” Journal of Ethnopharmacology, vol. 109, no. 2, pp. 177–206, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. R. P. Singh, M. K. N. Chidambara, and G. K. Jayaprakasha, “Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 81–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Kwak, H. H. Jeong, B. H. Sohng et al., “Quantitative analysis of antioxdants in Korea pomegranate Husk (Granati pericarpium) cultivated in different site,” Journal of the Korean Society for Applied Biological Chemistry, vol. 48, pp. 431–434, 2005. View at Google Scholar
  28. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standards. CLSI document M2-A7. Wayne, Pa, USA, 2001.
  29. C. O. Okunji, C. N. Okeke, H. C. Gugnani, and M. M. Iwu, “An antifungal spirostanol saponin from fruit pulp of Dracaena mannii,” International Journal of Crude Drug Research, vol. 28, no. 3, pp. 193–199, 1990. View at Google Scholar · View at Scopus
  30. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standards. CLSI document M7-A5. Wayne, Pa, USA, 2000.
  31. M. L. Myhal, D. C. Laux, and P. S. Cohen, “Relative colonizing abilities of human fecal and K-12 stains of Escherichia coli in the large intestines of streptomycin treated mice,” European Journal of Clinical Microbiology, vol. 1, pp. 186–192, 1982. View at Google Scholar
  32. M.-H. Lee, H. A. Kwon, D.-Y. Kwon et al., “Antibacterial activity of medicinal herb extracts against Salmonella,” International Journal of Food Microbiology, vol. 111, no. 3, pp. 270–275, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Alvarez, M. Sota, A. B. Vivanco et al., “Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1734–1738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Davies, “Inactivation of antibiotics and the dissemination of resistance genes,” Science, vol. 264, no. 5157, pp. 375–382, 1994. View at Google Scholar · View at Scopus
  35. R. F. Service, “Antibiotics that resist resistance,” Science, vol. 270, no. 5237, pp. 724–727, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Ahmad, Z. Mehmood, and F. Mohammad, “Screening of some Indian medicinal plants for their antimicrobial properties,” Journal of Ethnopharmacology, vol. 62, no. 2, pp. 183–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Berahou, A. Auhmani, N. Fdil, A. Benharref, M. Jana, and C. A. Gadhi, “Antibacterial activity of Quercus ilex bark's extracts,” Journal of Ethnopharmacology, vol. 112, no. 3, pp. 426–429, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. K. Salomão, P. R. S. Pereira, L. C. Campos et al., “Brazilian propolis: correlation between chemical composition and antimicrobial activity,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 3, pp. 317–324, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. D. B. Machado, I. C. R. Leal, A. C. F. Amaral, K. R. N. Dos Santos, M. G. Da Silva, and R. M. Kuster, “Antimicrobial ellagitannin of Punica granatum fruits,” Journal of the Brazilian Chemical Society, vol. 13, no. 5, pp. 606–610, 2002. View at Google Scholar · View at Scopus
  40. M. D. Leven, B. D. A. Vanden, T. Marten, A. Vilientmick, and E. C. Lomweas, “Screening of higher plants for biological activity,” Planta Medica, vol. 36, pp. 311–312, 1979. View at Google Scholar
  41. J. Lu, Y. Wei, and Q. Yuan, “Preparative separation of punicalagin from pomegranate husk by high-speed countercurrent chromatography,” Journal of Chromatography B, vol. 857, no. 1, pp. 175–179, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Aviram, N. Volkova, R Coleman et al., “Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: studies in vivo in atherosclerotic apolipoprotein e-deficient (E0) mice and in vitro in cultured macrophages and lipoproteins,” Journal of Agricultural and Food Chemistry, vol. 56, pp. 1148–1157, 2008. View at Google Scholar
  43. Y.-J. Ahn, C.-O. Lee, J.-H. Kweon, J.-W. Ahn, and J.-H. Park, “Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria,” Journal of Applied Microbiology, vol. 84, no. 3, pp. 439–443, 1998. View at Google Scholar · View at Scopus
  44. B. Thiem and O. Goślińska, “Antimicrobial activity of Rubus chamaemorus leaves,” Fitoterapia, vol. 75, no. 1, pp. 93–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Taguri, T. Tanaka, and I. Kouno, “Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease,” Biological and Pharmaceutical Bulletin, vol. 27, no. 12, pp. 1965–1969, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999. View at Google Scholar · View at Scopus