Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 969275, 7 pages
http://dx.doi.org/10.1155/2011/969275
Research Article

Enhanced Antitumoral Activity of Extracts Derived from Cultured Udotea flabellum (Chlorophyta)

1Department of Marine Resources, Cinvestav, Km 6 Carretera Antigua a Progreso, Cordemex, A.P. 73, 97310 Mérida, YUC, Mexico
2Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social; 41 No 439 x 32 y 34, Colonia Industrial CP, 97150 Mérida, YUC, Mexico

Received 16 January 2011; Accepted 3 June 2011

Copyright © 2011 Rosa Moo-Puc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. K. Rates, “Plants as source of drugs,” Toxicon, vol. 39, no. 5, pp. 603–613, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Graham, M. L. Quinn, D. S. Fabricant, and N. R. Farnsworth, “Plants used against cancer—an extension of the work of Jonathan Hartwell,” Journal of Ethnopharmacology, vol. 73, no. 3, pp. 347–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. W. Blunt, B. R. Copp, W. P. Hu, M. H. G. Munro, P. T. Northcote, and M. R. Prinsep, “Marine natural products,” Natural Product Reports, vol. 24, no. 1, pp. 31–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Puglisi, L. T. Tan, P. R. Jensen, and W. Fenical, “Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae,” Tetrahedron, vol. 60, no. 33, pp. 7035–7039, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Chetsumon, F. Umeda, I. Maeda, K. Yagi, T. Mizoguchi, and Y. Miura, “Broad spectrum and mode of action of an antibiotic produced by Scytonema sp. TISTR 8208 in a seaweed-type bioreactor,” Applied Biochemistry and Biotechnology, vol. 70–72, pp. 249–256, 1998. View at Google Scholar · View at Scopus
  7. P. O. Robles Centeno and D. L. Ballantine, “Effects of culture conditions on production of antibiotically active metabolites by the marine alga Spyridia filamentosa (Ceramiaceae, Rhodophyta). I. Light,” Journal of Applied Phycology, vol. 11, no. 2, pp. 217–224, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Moo-Puc, D. Robledo, and Y. Freile-Pelegrin, “Improved antitumoral activity of extracts derived from cultured Penicillus dumetosus,” Tropical Journal of Pharmaceutical Research, vol. 10, no. 2, pp. 177–185, 2011. View at Google Scholar
  9. K. H. Lee, “Research and discovery trends of Chinese medicine in the new century,” Journal of Chinese Medicine, vol. 15, no. 3, pp. 151–160, 2004. View at Google Scholar
  10. X. C. Li, M. R. Jacob, Y. Ding et al., “Capisterones A and B, which enhance fluconazole activity in Saccharomyces cerevisiae, from the marine green alga Penicillus capitatus,” Journal of Natural Products, vol. 69, no. 4, pp. 542–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Moo-Puc, D. Robledo, and Y. Freile-Pelegrin, “Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity,” Journal of Ethnopharmacology, vol. 120, no. 1, pp. 92–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Freile-Pelegrin, D. Robledo, M. J. Chan-Bacab, and B. O. Ortega-Morales, “Antileishmanial properties of tropical marine algae extracts,” Fitoterapia, vol. 79, no. 5, pp. 374–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Moo-Puc, D. Robledo, and Y. Freile-Pelegrín, “In vitro cytotoxic and antiproliferative activities of marine macroalgae from Yucatán, Mexico,” Ciencias Marinas, vol. 35, no. 4, pp. 345–358, 2009. View at Google Scholar · View at Scopus
  14. Y. V. Yuan and N. Walsh, “Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds,” Food and Chemical Toxicology, vol. 44, no. 7, pp. 1144–1150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Tronstad, O. Bruserud, K. Berge, and R. K. Berge, “Antiproliferative effects of a non-β-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures,” Leukemia, vol. 16, no. 11, pp. 2292–2301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Rahman, M. Iqbal Choudhary, and W. J. Thomsen, “Bioassay techniques for drug development,” in Manual of Bioassay Techniques for Natural Products Research, W. J. Thomsen, Ed., pp. 34–35, Harwood Academic Publishers, The Netherlands, 1st edition, 2001. View at Google Scholar
  17. S. N. Lim, P. C. K. Cheung, V. E. C. Ooi, and P. O. Ang, “Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum,” Journal of Agricultural and Food Chemistry, vol. 50, no. 13, pp. 3862–3866, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Google Scholar · View at Scopus
  19. M. Suffness and J. M. Pezzuto, “Assays related to cancer drug discovery,” in Methods in Plant Biochemistry: Assays for Bioactivity, K. Hostettmann, Ed., vol. 6, pp. 71–133, Academic Press, London, UK, 1990. View at Google Scholar
  20. W. Fenical and V. J. Paul, “Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae,” Hydrobiologia, vol. 116-117, no. 1, pp. 135–140, 1984. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Nakatsu, B. N. Ravi, and D. J. Faulkner, “Antimicrobial constituents of udotea Flabellum,” Journal of Organic Chemistry, vol. 46, no. 12, pp. 2435–2438, 1981. View at Google Scholar · View at Scopus
  22. M. A. Soobrattee, V. S. Neergheen, A. Luximon-Ramma, O. I. Aruoma, and T. Bahorun, “Phenolics as potential antioxidant therapeutic agents: mechanism and actions,” Mutation Research, vol. 579, no. 1-2, pp. 200–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Vinayak, A. S. Sabu, and A. Chatterji, “Bio-evaluation of two red seaweeds for their cytotoxic and antioxidant activities in vitro,” Journal of Complementary and Integrative Medicine, vol. 7, no. 1, article number 42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Rashmi, A. S. Sabu, and A. Chatterji, “Bio-prospecting of a few brown seaweeds for their cytotoxic and antioxidant activities,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 673083, 9 pages, 2011. View at Publisher · View at Google Scholar
  25. L. Reddy, B. Odhav, and K. D. Bhoola, “Natural products for cancer prevention: a global perspective,” Pharmacology and Therapeutics, vol. 99, no. 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. N. Aslam, T. Paruchuri, N. Bhagavathula, and J. Varani, “A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet,” Integrative Cancer Therapies, vol. 9, no. 1, pp. 93–99, 2010. View at Publisher · View at Google Scholar · View at Scopus