Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 125761, 9 pages
http://dx.doi.org/10.1155/2012/125761
Review Article

Eurycoma longifolia: Medicinal Plant in the Prevention and Treatment of Male Osteoporosis due to Androgen Deficiency

Department of Pharmacology, Faculty of Medicine, The National University of Malaysia, Kuala Lumpur Campus, 50300 Kuala Lumpur, Malaysia

Received 26 April 2012; Accepted 6 June 2012

Academic Editor: Ima Nirwana Soelaiman

Copyright © 2012 Nadia Mohd Effendy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, Traditional Medicine, WHO, Geneva, Switzerland, 2003.
  2. The Star, “Regulating Traditional Medicine,” 2008.
  3. A. Lewington, Medicinal Plants and Plant Extracts: A Review of Their Importation into Europe, Traffic International, Cambridge, UK, 1993.
  4. I. H. Burkill, A Dictionary of Economic Products of the Malay Peninsula, Ministry of Agriculture and Co-operative, Kuala Lumpur, Malaysia, 1966.
  5. P. W. Woods, “Herbal healing,” Essence, vol. 30, pp. 42–46, 1999. View at Google Scholar
  6. WHO, Drug Information. Herbal Medicines, vol. 16, World Health Organization, Geneva, Switzerland, 2002.
  7. M. Elvin-Lewis, “Should we be concerned about herbal remedies,” Journal of Ethnopharmacology, vol. 75, no. 2-3, pp. 141–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. H. R. Arthur, “A phytochemical survey of some plants of North Borneo,” The Journal of Pharmacy and Pharmacology, vol. 6, no. 1, pp. 66–72, 1954. View at Google Scholar · View at Scopus
  9. B. Douglas and A. K. Kiang, “A phytochemical survey of Malaya,” Malayan Pharmaceutical Journal, vol. 6, pp. 1–16, 1957. View at Google Scholar
  10. K. C. Chan, K. F. Mak, and L. E. Teo, “A new phytochemical survey of Malaya. IV. Chemical screening,” Chemical and Pharmaceutical Bulletin, vol. 25, pp. 1826–1829, 1977. View at Google Scholar
  11. Herbal Medicine Research Group, Compendium of Medicinal Plants Used in Malaysia, Kuala Lumpur, Institute for Medical Research, Kuala Lumpur, Malaysia, 2002.
  12. A. R. N. Ismail, “Marketing of medicinal plants using landscape architectural design,” in Proceedings of the Conference on Forestry and Forest Product Research, Medicinal Plants: Quality Herbal Products for Healthy Living (CFFPR'99), pp. 19–25, Forest Research Institute Malaysia (FRIM), 1999.
  13. “National policy on traditional medicine and regulation of herbal medicines,” Report of a WHO Global Survey, World Health Organization, Geneva, Switzerland, 2005.
  14. S. H. Ahmad, Wonder Molecules From Nature and Laboratory, University Publication Centre, Malaysia, 1st edition, 2010.
  15. R. Bhat and A. A. Karim, “Tongkat Ali (Eurycoma longifolia Jack): a review on its ethnobotany and pharmacological importance,” Fitoterapia, vol. 81, no. 7, pp. 669–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Zakaria and M. A. Mohd, Traditional Malay Medicinal Plants, vol. 8, Penerbit Fajar Bakti, Kuala Lumpur, Malaysia, 1994.
  17. Z. A. Zakaria, H. Patahuddin, A. S. Mohamad, D. A. Israf, and M. R. Sulaiman, “In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum,” Journal of Ethnopharmacology, vol. 128, no. 1, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Medicinal Plants, International Technology Center, United Nations International Development Organisation, UNIDO, Trieste, Italy.
  19. M. S. Kamarudin and A. Latiff, Tumbuhan Ubatan Malaysia, Universiti Kebangsaan Malaysia and Ministry of Science Technology and Environment, Malaysia, 2002.
  20. Herbal Medicine Research Group, Compendium of Medicinal Plants Used in Malaysia, vol. 2, Institute for Medical Research, Kuala Lumpur, Malaysia, 2002.
  21. W. G. Goreja, Tongkat Ali: The Tree that Cures a Hundred Diseases, vol. 2, Amazing Herb Press, New York, NY, USA, 2004.
  22. S. H. Goh, C. H. Chuah, J. S. L. Mok, and E. Soepadmo, Malaysian Medicinal Plants for the Treatment of Cardiovascular Disease, Pelanduk Publication, Kuala Lumpur, Malaysia, 1995.
  23. J. B. Jagananth and L.T. Ng, Herbs: The Green Pharmacy of Malaysia, Vinpress Sdn. Bhd. and Malaysian Agricultural Research and Development Institute (MARDI), Kuala Lumpur, Malaysia, 2000.
  24. R. Sahelian, “Tongkat Ali: exotic Asian aphrodisiac,” in Natural Sex Boosters: Supplements that Enhance Stamina, Sensation and Sexuality for Men and Women, R. Sahelian, Ed., p. 87, Square One Publishers, New York, NY, USA, 2004. View at Google Scholar
  25. H. H. Ang, “An insight into Malaysian herbal medicines,” Trends in Pharmacological Sciences, vol. 25, no. 6, pp. 297–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Morita, E. Kishi, K. Takeya, H. Itokawa, and Y. Iitaka, “Squalene derivatives from Eurycoma longifolia,” Phytochemistry, vol. 34, no. 3, pp. 765–771, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Ismail, N. Ismail, and J. Lassa, Malaysian Herbal Monograph, vol. 1, Malaysian Monograph Committee, Kuala Lumpur, Malaysia, 1999.
  28. J. D. Gimlette and H. W. Thomson, A Dictionary of Malayan Medicine, Oxford University Press, Kuala Lumpur, Malaysia, 1977.
  29. H. H. Ang, Y. Hitotsuyanagi, H. Fukaya, and K. Takeya, “Quassinoids from Eurycoma longifolia,” Phytochemistry, vol. 59, no. 8, pp. 833–837, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. I. Tambi, “Glycoprotein water-soluble extract of Eurycoma longifolia Jack as a health supplement in management of Health aging in aged men,” in Proceedings of the 3rd World Congress on the Aging Male, B. Lunenfeld, Ed., p. 6, Aging Male, Germany, 2002.
  31. M. I. Tambi, “Standardized water soluble extract of Eurycoma longifolia (LJ100) on men’s health,” International Journal of Andrology, vol. 28, Supplement 1, p. 27, 2005, Proceedings of the 8th International Congress of Andrology, Republic of Korea. View at Google Scholar
  32. A. S. Nazrun, M. Firdaus, A. A. S. Tajul, M. Norliza, M. Norazlina, and N. S. Ima, “The anti-osteoporotic effect of Eurycoma longifolia in aged orchidectomised rat model,” The Aging Male, vol. 14, no. 3, pp. 150–154, 2011. View at Google Scholar
  33. J. P. Bilezikian, “Osteoporosis in men,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3431–3434, 1999. View at Google Scholar · View at Scopus
  34. C. Roehrig, G. Miller, C. Lake, and J. Bryant, “National health spending by medical condition, 1996–2005,” Health Affairs, vol. 28, no. 2, pp. w358–w367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. WHO, “Chronic diseases,” 2011.
  36. Malaysian Osteoporosis Society.
  37. K. Y. Loh and H. K. Shong, “Osteoporosis: primary prevention in the community,” Medical Journal of Malaysia, vol. 62, no. 4, pp. 355–357, 2007. View at Google Scholar · View at Scopus
  38. S. Lauralee, Fundamentals of Physiology: A Human Perspective, Brooks/Coe Cengage Learning, Canada, 4th edition, 2011.
  39. P. A. Hill, “Bone remodelling,” British Journal of Orthodontics, vol. 25, no. 2, pp. 101–107, 1998. View at Google Scholar · View at Scopus
  40. L. G. Raisz, “Pathogenesis of osteoporosis: concepts, conflicts, and prospects,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3318–3325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Balasch, “Sex steroids and bone: current perspectives,” Human Reproduction Update, vol. 9, no. 3, pp. 207–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. N. McGriff-Lee, S. N. Kalantaridou, F. Pucino, and K. A. Calis, “Effects of androgens on bone in men and women,” Clinical Reviews in Bone and Mineral Metabolism, vol. 3, no. 1, pp. 51–66, 2005. View at Google Scholar · View at Scopus
  43. S. H. Windahl, N. Andersson, A. E. Börjesson et al., “Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice,” PLoS One, vol. 6, no. 6, Article ID e21402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Notelovitz, “Androgen effects on bone and muscle,” Fertility and Sterility, vol. 77, no. 4, pp. S34–S41, 2002. View at Google Scholar · View at Scopus
  45. R. L. Jilka, “Cytokines, bone remodeling, and estrogen deficiency: a 1998 update,” Bone, vol. 23, no. 2, pp. 75–81, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Manolagas, S. Kousteni, and R. L. Jilka, “Sex steroids and bone,” Recent Progress in Hormone Research, vol. 57, pp. 385–409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. R. Simpson, S. E. Bulun, J. E. Nichols, and Y. Zhao, “Estrogen biosynthesis in adipose tissue: regulation by paracrine and autocrine mechanisms,” Journal of Endocrinology, vol. 150, pp. S51–S57, 1996. View at Google Scholar · View at Scopus
  48. M. Shozu and E. R. Simpson, “Aromatase expression of human osteoblast-like cells,” Molecular and Cellular Endocrinology, vol. 139, no. 1-2, pp. 117–129, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Tanaka, M. Haji, Y. Nishi, T. Yanase, R. Takayanagi, and H. Nawata, “Aromatase activity in human osteoblast-like osteosarcoma cell,” Calcified Tissue International, vol. 52, no. 2, pp. 107–109, 1993. View at Google Scholar · View at Scopus
  50. B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 763–773, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Vanderschueren, S. Boonen, and R. Bouillon, “Action of androgens versus estrogens in male skeletal homeostasis,” Bone, vol. 23, no. 5, pp. 391–394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Ishihara and T. Hirano, “IL-6 in autoimmune disease and chronic inflammatory proliferative disease,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 357–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Girasole, G. Passeri, R. L. Jilka, and S. C. Manolagas, “Interleukin-11: a new cytokine critical for osteoclast development,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1516–1524, 1994. View at Google Scholar · View at Scopus
  54. R. L. Jilka, R. S. Weinstein, T. Bellido, A. M. Parfitt, and S. C. Manolagas, “Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 793–802, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. D. A. Papanicolaou, R. L. Wilder, S. C. Manolagas, and G. P. Chrousos, “The pathophysiologic roles of interleukin-6 in human disease,” Annals of Internal Medicine, vol. 128, no. 2, pp. 127–137, 1998. View at Google Scholar · View at Scopus
  56. G. Eghbali-Fatourechi, S. Khosla, A. Sanyal, W. J. Boyle, D. L. Lacey, and B. L. Riggs, “Role of RANK ligand in mediating increased bone resorption in early postmenopausal women,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1221–1230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. W. S. Simonet, D. L. Lacey, C. R. Dunstan et al., “Osteoprotegerin: a novel secreted protein involved in the regulation of bone density,” Cell, vol. 89, no. 2, pp. 309–319, 1997. View at Google Scholar · View at Scopus
  58. R. T. Turner, D. S. Colvard, and T. C. Spelsberg, “Estrogen inhibition of periosteal bone formation in rat long bones: down-regulation of gene expression for bone matrix proteins,” Endocrinology, vol. 127, no. 3, pp. 1346–1351, 1990. View at Google Scholar · View at Scopus
  59. A. Ornoy, S. Giron, R. Aner, M. Goldstein, B. D. Boyan, and Z. Schwartz, “Gender dependent effects of testosterone and 17β-estradiol on bone growth and modelling in young mice,” Bone and Mineral, vol. 24, no. 1, pp. 43–58, 1994. View at Google Scholar · View at Scopus
  60. G. Poor, E. J. Atkinson, W. M. O'Fallon, and L. J. Melton, “Determinants of reduced survival following hip fractures in men,” Clinical Orthopaedics and Related Research, no. 319, pp. 260–265, 1995. View at Google Scholar · View at Scopus
  61. J. M. Campion and M. J. Maricic, “Osteoporosis in men,” American Family Physician, vol. 67, no. 7, pp. 1521–1525, 2003. View at Google Scholar · View at Scopus
  62. E. S. Orwoll and R. F. Klein, “Osteoporosis in men,” Endocrine Reviews, vol. 16, no. 1, pp. 87–116, 1995. View at Google Scholar · View at Scopus
  63. F. H. Anderson, R. M. Francis, P. L. Selby, and C. Cooper, “Sex hormones and osteoporosis in men,” Calcified Tissue International, vol. 62, no. 3, pp. 185–188, 1998. View at Google Scholar · View at Scopus
  64. “Endocrine Society highlights importance of appropriate diagnosis and treatment of low testosterone,” in Proceedings of the 82nd Annual Meeting of The Endocrine Society, 2000.
  65. D. J. Handelsman, “Androgen action and pharmacologic uses,” in Endocrinology, L. J. DeGroot and J. L. Jameson, Eds., pp. 2232–2242, W. B. Saunders, Philadelphia, Pa, USA, 4th edition, 2001. View at Google Scholar
  66. H. A. Feldman, C. Longcope, C. A. Derby et al., “Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 2, pp. 589–598, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. R. K. Gill, R. T. Turner, T. J. Wronski, and N. H. Bell, “Orchiectomy markedly reduces the concentration of the three isoforms of transforming growth factor β in rat bone, and reduction is prevented by testosterone,” Endocrinology, vol. 139, no. 2, pp. 546–550, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Gunness and E. Orwoll, “Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats,” Journal of Bone and Mineral Research, vol. 10, no. 11, pp. 1735–1743, 1995. View at Google Scholar · View at Scopus
  69. C. C. Danielsen, L. Mosekilde, and T. T. Andreassen, “Long-term effect of orchidectomy on cortical bone from rat femur: bone mass and mechanical properties,” Calcified Tissue International, vol. 50, no. 2, pp. 169–174, 1992. View at Google Scholar · View at Scopus
  70. M. F. Moreau, H. Libouban, E. Legrand, M. F. Basle, M. Audran, and D. Chappard, “Lean, fat and bone mases are influenced by orchidectomy in the rat. A densitometric X-ray absorptiometric study,” Journal of Musculoskeletal and Neuronal Interactions, vol. 1, no. 3, pp. 209–213, 2001. View at Google Scholar
  71. A. S. Nazrun, A. B. Firdaus, A. A. S. Tajul, M. Norliza, M. Norazlina, and S. Ima Nirwana, “The anti-osteoporotic effect of Eurycoma longifolia in aged orchidectomised rat model,” The Aging Male, vol. 14, no. 3, pp. 150–154, 2011. View at Google Scholar
  72. S. C. Manolagas, R. L. Jilka, G. Girasole, G. Passeri, and T. Bellido, “Estrogens, cytokine and the pathophysiology of osteoporosis,” in Current Opinion in Endocrinology and Diabetes, P. O. Kohler, Ed., pp. 275–281, Current Science, Philadelphia, PA, USA, 1994. View at Google Scholar
  73. R. G. Erben, “Skeletal effects of androgen withdrawal,” Journal of Musculoskeletal and Neuronal Interactions, vol. 1, no. 3, pp. 225–233, 2001. View at Google Scholar
  74. M. S. Almeida, “The basic biology of estrogen and bone,” in Contemporary Endocrinology: Osteoporosis: Pathophysiology and Clinical Management, R. A. Adler, Ed., pp. 333–344, USA, 2002. View at Google Scholar
  75. I. R. Garrett, B. F. Boyce, R. O. C. Oreffo, L. Bonewald, J. Poser, and G. R. Mundy, “Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo,” Journal of Clinical Investigation, vol. 85, no. 3, pp. 632–639, 1990. View at Google Scholar · View at Scopus
  76. N. E. Lane, The Osteoporosis Book: A Guide For Patients and Their Families, Oxford University Press, New York, NY, USA, 2001.
  77. M. J. Favus, “Bisphosphonates for osteoporosis,” New England Journal of Medicine, vol. 363, no. 21, pp. 2027–2035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. W. Dempster, F. Cosman, E. S. Kurland et al., “Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study,” Journal of Bone and Mineral Research, vol. 16, no. 10, pp. 1846–1853, 2001. View at Google Scholar · View at Scopus
  79. P. J. Meunier, C. Roux, E. Seeman et al., “The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis,” New England Journal of Medicine, vol. 350, no. 5, pp. 459–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. D. Ringe, “Strontium ranelate: an effective solution for diverse fracture risks,” Osteoporosis International, vol. 21, pp. S431–S436, 2010. View at Google Scholar · View at Scopus
  81. S. O'Donnell, A. Cranney, G. A. Wells, J. D. Adachi, and J. Y. Reginster, “Strontium ranelate for preventing and treating postmenopausal osteoporosis,” Cochrane Database of Systematic Reviews, vol. 3, Article ID CD005326, 2006. View at Google Scholar · View at Scopus
  82. L. B. S. Kardono, C. K. Angerhofer, S. Tsauri, K. Padmawinata, J. M. Pezzuto, and A. D. Kinghorn, “Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia,” Journal of Natural Products, vol. 54, no. 5, pp. 1360–1367, 1991. View at Google Scholar · View at Scopus
  83. H. H. Ang and M. K. Sim, “Eurycoma longifolia JACK and orientation activities in sexually experienced male rats,” Biological and Pharmaceutical Bulletin, vol. 21, no. 2, pp. 153–155, 1998. View at Google Scholar · View at Scopus
  84. S. Hamzah and A. Yusof, “The ergogenic effects of Tongkat Ali (Eurycoma longifolia),” British Journal of Sports Medicine, vol. 37, pp. 465–466, 2003. View at Google Scholar
  85. S. Jiwajinda, V. Santisopasri, A. Murakami et al., “In vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia,” Journal of Ethnopharmacology, vol. 82, no. 1, pp. 55–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. M. I. Bin and M. K. Imran, “Eurycoma longifolia Jack in managing idiopathic male infertility,” Asian Journal of Andrology, vol. 12, no. 3, pp. 376–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Bedir, H. Abou-Gazar, J. N. Ngwendson, and I. A. Khan, “Eurycomaoside: a new quassinoid-type glycoside from the roots of Eurycoma longifolia,” Chemical and Pharmaceutical Bulletin, vol. 51, no. 11, pp. 1301–1303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. O. Asiah, M. Y. Nurhanan, and A. Mohd Ilham, “Determination of bioactive peptide (4.3 KDA) as an aphrodisiac marker in six Malaysian plants,” Journal of Tropical Forest Science, vol. 19, no. 1, pp. 61–63, 2007. View at Google Scholar · View at Scopus
  89. H. H. Ang and M. K. Sim, “Eurycoma longifolia increases sexual motivation in sexually naive male rats,” Archives of Pharmacal Research, vol. 21, no. 6, pp. 779–781, 1998. View at Google Scholar · View at Scopus
  90. J. M. Ali and J. M. Saad, Biochemical effect of Eurycoma longifolia Jack on the sexual behaviour, fertility, sex hormone and glycolysis [Dissertation], Department of Biochemistry, University of Malaya, 1993.
  91. M. I. Tambi, M. K. Imran, and R. R. Henkel, “Standardised water-solubleextract of Eurycoma longifolia, Tongkat ali, as testosterone booster for men with late- onset hypogonadism,” Andrologia, vol. 44, pp. 226–230, 2011. View at Google Scholar
  92. H. H. Ang, H. S. Cheang, and A. P. M. Yusof, “Effects of Eurycoma longifolia Jack (Tongkat Ali) on the initiation of sexual performance of inexperienced castrated male rats,” Experimental Animals, vol. 49, no. 1, pp. 35–38, 2000. View at Google Scholar · View at Scopus
  93. S. G. Moreira, R. E. Brannigan, A. Spitz, F. J. Orejuela, L. I. Lipshultz, and E. D. Kim, “Side-effect profile of sildenafil citrate (Viagra) in clinical practice,” Urology, vol. 56, no. 3, pp. 474–476, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Ray, Natural Sex Booster: Supplements That Enhance Stamina, Sensation and Sexuality For Men and Women, Square One Publisher, New York, NY, USA, 2004.
  95. R. J. Van't Hof and S. H. Ralston, “Nitric oxide and bone,” Immunology, vol. 103, no. 3, pp. 255–261, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. S. H. Ralston, L. P. Ho, M. H. Helfrich, P. S. Grabowski, P. W. Johnston, and N. Benjamin, “Nitric oxide: a cytokine-induced regulator of bone resorption,” Journal of Bone and Mineral Research, vol. 10, no. 7, pp. 1040–1049, 1995. View at Google Scholar · View at Scopus
  97. M. L. Brandi, M. Hukkanen, T. Umeda et al., “Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2954–2958, 1995. View at Publisher · View at Google Scholar · View at Scopus
  98. C. W. G. M. Lowik, P. H. Nibbering, M. Van de Ruit, and S. E. Papapoulos, “Inducible production of nitric oxide in osteoblast-like cells and in fetal mouse bone explants is associated with suppression of osteoclastic bone resorption,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1465–1472, 1994. View at Google Scholar · View at Scopus
  99. K. E. Armour and S. H. Ralston, “Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells,” Endocrinology, vol. 139, no. 2, pp. 799–802, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. R. J. Van't Hof and S. H. Ralston, “Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity,” Journal of Bone and Mineral Research, vol. 12, no. 11, pp. 1797–1804, 1997. View at Google Scholar · View at Scopus
  101. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 2007.
  102. F. Wauquier, L. Leotoing, V. Coxam, J. Guicheux, and Y. Wittrant, “Oxidative stress in bone remodelling and disease,” Trends in Molecular Medicine, vol. 15, no. 10, pp. 468–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Xu, B. A. Watkins, and M. F. Seifert, “Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry,” Calcified Tissue International, vol. 57, no. 4, pp. 293–300, 1995. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Ima-Nirwana, A. Kiftiah, A. G. Zainal, M. Norazlina, M. T. Gapor, and B. A. K. Khalid, “Palm vitamin E prevents osteoporosis in orchidectomized growing male rats,” Natural Product Sciences, vol. 6, no. 4, pp. 155–160, 2000. View at Google Scholar · View at Scopus
  105. M. I. Tambi and M. I. Kamarul, “Eurycoma longifolia Jack in managing idiopathic male infertility,” Asian Journal of Andrology, vol. 12, no. 3, pp. 376–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Satayavivad, S. Noppamas, S. Aimon, and T. Yodhathai, “Toxicological and antimalaria activity of Eurycoma longifolia Jack extracts in mice,” Thai Journal of Phytopharmacy, vol. 5, pp. 14–27, 1998. View at Google Scholar
  107. A. N. Shuid, L. K. Siang, T. G. Chin, N. Muhammad, N. Mohamed, and I. N. Soelaiman, “Acute and subacute toxicity studies of Eurycoma longifolia in male rats,” International Journal of Pharmacology, vol. 7, no. 5, pp. 641–646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Reagan-Shaw, M. Nihal, and N. Ahmad, “Dose translation from animal to human studies revisited,” FASEB Journal, vol. 22, no. 3, pp. 659–661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. M. I. Tambi, “Standardized water soluble extract of Eurycoma longifolia (LJ100) on men’s health,” International Journal of Andrology, vol. 28, pp. 25–44, 2005. View at Google Scholar