Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 190370, 11 pages
http://dx.doi.org/10.1155/2012/190370
Research Article

Alstonia scholaris R. Br. Significantly Inhibits Retinoid-Induced Skin Irritation In Vitro and In Vivo

1Amorepacific Co. R&D Center, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 449-729, Republic of Korea
2College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
3Department of Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 426-791, Republic of Korea

Received 7 January 2011; Accepted 5 July 2011

Academic Editor: Francesca Borrelli

Copyright © 2012 Soo-Jin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Chung, “Photoaging in Asians,” Photodermatology Photoimmunology and Photomedicine, vol. 19, no. 3, pp. 109–121, 2003. View at Publisher · View at Google Scholar
  2. G. Jenkins, “Molecular mechanisms of skin ageing,” Mechanisms of Ageing and Development, vol. 123, no. 7, pp. 801–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002. View at Google Scholar · View at Scopus
  4. P. Bjerring, M. Clement, L. Heickendorff, H. Egevist, and M. Kiernan, “Selective non-ablative wrinkle reduction by laser,” Journal of Cutaneous Laser Therapy, vol. 2, no. 1, pp. 9–15, 2000. View at Google Scholar · View at Scopus
  5. Y. Minami, K. Kawabata, Y. Kubo et al., “Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary β-carotene in photoaging of hairless mouse skin,” Journal of Nutritional Biochemistry, vol. 20, no. 5, pp. 389–398, 2009. View at Publisher · View at Google Scholar
  6. J. Varani, R. L. Warner, M. Gharaee-Kermani et al., “Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin,” Journal of Investigative Dermatology, vol. 114, no. 3, pp. 480–486, 2000. View at Publisher · View at Google Scholar
  7. G. J. Fisher, S. C. Datta, H. S. Talwar et al., “Molecular basis of sun-induced premature skin ageing and retinoid antagonism,” Nature, vol. 379, no. 6563, pp. 335–339, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Fisher, Z. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees, “Pathophysiology of premature skin aging induced by ultraviolet light,” The New England Journal of Medicine, vol. 337, no. 20, pp. 1419–1428, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Kligman, J. E. Fulton, and G. Plewig, “Topical vitamin A acid in acne vulgaris,” Archives of Dermatology, vol. 99, no. 4, pp. 469–476, 1969. View at Google Scholar · View at Scopus
  10. J. L. Leyden, G. L. Grove, M. J. Grove, E. G. Thorne, and L. Lufrano, “Treatment of photodamaged facial skin with topical tretinoin,” Journal of the American Academy of Dermatology, vol. 21, no. 3, pp. 638–644, 1989. View at Google Scholar · View at Scopus
  11. A. M. Kligman, G. L. Grove, R. Hirose, and J. J. Leyden, “Topical tretinoin for photoaged skin,” Journal of the American Academy of Dermatology, vol. 15, no. 4, pp. 836–859, 1986. View at Google Scholar · View at Scopus
  12. R. C. Moon and L. Itri, Retinoids and Cancer, Academic Press, New York, 1984.
  13. C. E. Orfanos, G. Mahrle, G. Goerz et al., “Laboratory investigations in patients with generalized psoriasis under oral retinoid treatment. A multicenter study of computerized data,” Dermatologica, vol. 159, no. 1, pp. 62–70, 1979. View at Google Scholar
  14. G. J. Fisher, S. Datta, Z. Wang et al., “c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid,” Journal of Clinical Investigation, vol. 106, no. 5, pp. 663–670, 2000. View at Google Scholar · View at Scopus
  15. J. H. Saurat, “Side effects of systemic retinoids and their clinical management,” Journal of the American Academy of Dermatology, vol. 27, no. 6, pp. S23–S28, 1992. View at Google Scholar · View at Scopus
  16. S. Kang and J. J. Voorhees, “Photoaging therapy with topical tretinoin: an evidence-based analysis,” Journal of the American Academy of Dermatology, vol. 39, no. 2, pp. S55–S61, 1998. View at Google Scholar · View at Scopus
  17. B. A. Gilchrest, Retinoid Pharmacology and Skin, CRC Press, London, UK, 1991.
  18. M. A. Farage, A. Katsarou, and H. I. Maibach, “Sensory, clinical and physiological factors in sensitive skin: a review,” Contact Dermatitis, vol. 55, no. 1, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. M. Jackson, “Preservative-free cosmetics,” American Journal of Contact Dermatitis, vol. 4, no. 1, pp. 47–49, 1993. View at Google Scholar · View at Scopus
  20. E. Berardesca and H. I. Maibach, “Sensitive and ethnic skin: a need for special skin-care agents?” Dermatologic Clinics, vol. 9, no. 1, pp. 89–92, 1991. View at Google Scholar · View at Scopus
  21. G. Primavera and E. Berardesca, “Sensitive skin: mechanisms and diagnosis,” International Journal of Cosmetic Science, vol. 27, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. W. M. Bayliss, “On the origin from the spinal cord of the vaso-dilator fibres of the hind-limb, and on the nature of these fibres,” The Journal of Physiology, vol. 26, pp. 173–209, 1901. View at Google Scholar
  23. S. S. Karanth, D. R. Springall, D. M. Kuhn, M. M. Levene, and J. M. Polak, “An immunocytochemical study of cutaneous innervation and the distribution of neuropeptides and protein gene product 9.5 in man and commonly employed laboratory animals,” American Journal of Anatomy, vol. 191, no. 4, pp. 369–383, 1991. View at Google Scholar · View at Scopus
  24. C. R. Martling, A. Saria, J. A. Fischer, T. Hokfelt, and J. M. Lundberg, “Calcitonin gene-related peptide and the lung: neuronal coexistence with substance P, release by capsaicin and vasodilatory effect,” Regulatory Peptides, vol. 20, no. 2, pp. 125–139, 1988. View at Google Scholar · View at Scopus
  25. A. A. Salim, M. J. Garson, and D. J. Craik, “New indole alkaloids from the bark of Alstonia scholaris,” Journal of Natural Products, vol. 67, no. 9, pp. 1591–1594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. D. Holdsworth, Medicinal Plants of Papua New Guinea, Maple Press, 1986.
  27. S. H. Han, J. S. Lee, Y. J. Kim et al., “Quantitative characterization of degradation behaviors of antioxidants stabilized in lipid particles,” Talanta, vol. 71, no. 5, pp. 2129–2133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Frosch and A. M. Kligman, “The soap chamber test. A new method for assessing the irritancy of soaps,” Journal of the American Academy of Dermatology, vol. 1, no. 1, pp. 35–41, 1979. View at Google Scholar · View at Scopus
  29. H. A. Shelanski and M. V. Shelanski, “A new technique of human patch tests,” Proceedings of the Scientific Section of the Toilet Goods Association, vol. 19, pp. 46–49, 1953. View at Google Scholar
  30. H. A. Shelanski, “Experiences with and considerations of the human patch test method,” Journal Of Cosmetic Science, vol. 2, no. 5, pp. 324–331, 1951. View at Google Scholar
  31. CTFA Safety Testing Guideline, The Cosmetic, Toiletry and Fragrance Association, Inc., Washington, DC, USA, 1981.
  32. T. Yamauchi, F. Abe, W. G. Padolina, and F. M. Dayrit, “Alkaloids from leaves and bark of Alstonia scholaris in the Philippines,” Phytochemistry, vol. 29, no. 10, pp. 3321–3325, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Feng, X. H. Cai, Z. Z. Du, and X. D. Luo, “Iridoids from the bark of Alstonia scholaris,” Helvetica Chimica Acta, vol. 91, no. 12, pp. 2247–2251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X. H. Cai, Q. G. Tan, Y. P. Liu et al., “A cage-monoterpene indole alkaloid from Alstonia scholaris,” Organic Letters, vol. 10, no. 4, pp. 577–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. P. G. Macabeo, K. Krohn, D. Gehle et al., “Indole alkaloids from the leaves of Philippine Alstonia scholaris,” Phytochemistry, vol. 66, no. 10, pp. 1158–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Hui, Y. Sun, L. Zhu, W. Guo, and G. Rao, “Flavonoids in leaves of Alstonia scholaris,” Zhongguo Zhong Yao Za Zhi, vol. 34, no. 9, pp. 1111–1113, 2009. View at Google Scholar · View at Scopus
  37. F. Wang, F. C. Ren, and J. K. Liu, “Alstonic acids A and B, unusual 2,3-secofernane triterpenoids from Alstonia scholaris,” Phytochemistry, vol. 70, no. 5, pp. 650–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Rastogi and B. N. Mehrotra, Compendium of Indian Medicinal Plants, Central Drug Research Institute, Lucknow, India, 1990.
  39. A. Rajic, G. Kweifio-Okai, T. Macrides, R. M. Sandeman, D. S. Chandler, and G. M. Polya, “Inhibition of serine proteases by anti-inflammatory triterpenoids,” Planta Medica, vol. 66, no. 3, pp. 206–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Keawpradub, P. J. Houghton, E. Eno-Amooquaye, and P. J. Burke, “Activity of extracts and alkaloids of Thai Alstonia species against human lung cancer cell lines,” Planta Medica, vol. 63, no. 2, pp. 97–101, 1997. View at Google Scholar · View at Scopus
  41. P. Kamarajan, N. Sekar, V. Mathuram, and S. Govindasamy, “Antitumor effect of echitamine chloride on methylcholonthrene induced fibrosarcoma in rats,” Biochemistry International, vol. 25, no. 3, pp. 491–498, 1991. View at Google Scholar · View at Scopus
  42. M. Recio, R. M. Giner, S. Máñez, and J. L. Ríos, “Structural considerations on the iridoids as anti-inflammatory agents,” Planta Medica, vol. 60, no. 3, pp. 232–234, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. Lee, E. J. Shin, K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim, “Anti-inflammatory activity of the major constituents of Lonicera japonica,” Archives of Pharmacal Research, vol. 18, no. 2, pp. 133–135, 1995. View at Google Scholar · View at Scopus
  44. G.-S. Du, J.-H. Shang, and X.-H. Cai, “Antitussive constituents from roots of alstonia scholaris (Apocynaceae),” Acta Botanica Yunnanica, vol. 29, no. 3, p. 366, 2007. View at Google Scholar
  45. B. H. Kim, Y. S. Lee, and K. S. Kang, “The mechanism of retinol-induced irritation and its application to anti-irritant development,” Toxicology Letters, vol. 146, no. 1, pp. 65–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. G. X. Bian, G. G. Li, Y. Yang et al., “Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat,” Biological and Pharmaceutical Bulletin, vol. 31, no. 3, pp. 458–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Jia and X. Lu, “Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins,” Journal of Chromatography A, vol. 1193, no. 1-2, pp. 136–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Matsuda, T. Morikawa, H. Ueda, and M. Yoshikawa, “Medicinal foodstuffs. XXVII. Saponin constituents of gotu kola (2): structures of new ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from Centella asiatica cultivated in Sri Lanka,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 10, pp. 1368–1371, 2001. View at Publisher · View at Google Scholar
  49. M. Steinhoff, S. Ständer, S. Seeliger, J. C. Ansel, M. Schmelz, and T. Luger, “Modern aspects of cutaneous neurogenic inflammation,” Archives of Dermatology, vol. 139, no. 11, pp. 1479–1488, 2003. View at Publisher · View at Google Scholar
  50. J. Szolcsanyi, “Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism,” Progress in Brain Research, vol. 113, pp. 343–359, 1996. View at Google Scholar · View at Scopus
  51. S. Allouche, J. Polastron, and P. Jauzac, “The δ-opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK-N-BE,” Journal of Neurochemistry, vol. 67, no. 6, pp. 2461–2470, 1996. View at Google Scholar
  52. R. Gamse, P. Holzer, and F. Lembeck, “Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurons,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 308, no. 3, pp. 281–285, 1979. View at Google Scholar · View at Scopus
  53. S. M. I. Kazmi and R. K. Mishra, “Comparative pharmacological properties and functional coupling of μ and δ opioid receptor sites in human neuroblastoma SH-SY5Y cells,” Molecular Pharmacology, vol. 32, no. 1, pp. 109–118, 1987. View at Google Scholar
  54. D. S. K. Samways and G. Henderson, “Opioid elevation of intracellular free calcium: possible mechanisms and physiological relevance,” Cellular Signalling, vol. 18, no. 2, pp. 151–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Inui, Y. Kinoshita, A. Yamaguchi, T. Yamatani, and T. Chiba, “Linkage between capsaicin-stimulated calcitonin gene-related peptide and somatostatin release in rat stomach,” American Journal of Physiology, vol. 261, no. 5, pp. G770–G774, 1991. View at Google Scholar · View at Scopus