Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 237236, 8 pages
http://dx.doi.org/10.1155/2012/237236
Research Article

Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model

Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

Received 20 June 2012; Revised 12 August 2012; Accepted 14 August 2012

Academic Editor: Ahmad Nazrun Shuid

Copyright © 2012 Zil Hayatullina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Cawthon, R. L. Fullman, L. Marshall et al., “Physical performance and risk of hip fractures in older men,” Journal of Bone and Mineral Research, vol. 23, no. 7, pp. 1037–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. L. Riggs, S. Khosla, and L. J. Melton, “Sex steroids and the construction and conservation of the adult skeleton,” Endocrine Reviews, vol. 23, no. 3, pp. 279–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. N. Chavan, U. More, S. Mulgund, V. Saxena, and A. N. Sontakke, “Effect of supplementation of vitamin C and E on oxidative stress in osteoporosis,” Indian Journal of Clinical Biochemistry, vol. 22, no. 2, pp. 101–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. I. R. Garrett, B. F. Boyce, R. O. C. Oreffo, L. Bonewald, J. Poser, and G. R. Mundy, “Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo,” Journal of Clinical Investigation, vol. 85, no. 3, pp. 632–639, 1990. View at Google Scholar · View at Scopus
  5. S. Muthusami, I. Ramachandran, B. Muthusamy et al., “Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats,” Clinica Chimica Acta, vol. 360, no. 1-2, pp. 81–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. J. Jagger, J. M. Lean, J. T. Davies, and T. J. Chambers, “Tumor necrosis factor-α mediates osteopenia caused by depletion of antioxidants,” Endocrinology, vol. 146, no. 1, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Khassaf, A. McArdle, C. Esanu et al., “Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle,” Journal of Physiology, vol. 549, no. 2, pp. 645–652, 2003. View at Google Scholar · View at Scopus
  8. S. Ima-Nirwana and S. Suhaniza, “Effects of tocopherols and tocotrienols on body composition and bone calcium content in adrenalectomized rats replaced with dexamethasone,” Journal of Medicinal Food, vol. 7, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. S. Ahmad, B. A. K. Khalid, D. A. Luke, and S. I. Nirwana, “Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone,” Clinical and Experimental Pharmacology and Physiology, vol. 32, no. 9, pp. 761–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Imai, M. Omoto, K. Seki, and T. Harada, “The effects of long-term intake of restricted calcium, vitamin D, and vitamin E and cadmium-added diets on various organs and bones of mice: a histological and the roentgenological study,” Nippon Eiseigaku Zasshi, vol. 50, no. 2, pp. 660–682, 1995. View at Google Scholar · View at Scopus
  11. B. J. Villarino, L. M. Dy, and M. C. C. Lizada, “Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil,” LWT Food Science and Technology, vol. 40, no. 2, pp. 193–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. G. Nevin and T. Rajamohan, “Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation,” Clinical Biochemistry, vol. 37, no. 9, pp. 830–835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. G. Nevin and T. Rajamohan, “Influence of virgin coconut oil on blood coagulation factors, lipid levels and LDL oxidation in cholesterol fed Sprague-Dawley rats,” e-SPEN, vol. 3, no. 1, pp. e1–e8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Hery, Hernayanti, and P. Agus, “Virgin coconut oil enriched with Zn as immunostimulator for vaginal candidiasis patient,” Journal of Biosciences, vol. 15, pp. 135–139, 2008. View at Google Scholar
  15. D. O. Ogbolu, A. A. Oni, O. A. Daini, and A. P. Oloko, “In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria,” Journal of Medicinal Food, vol. 10, no. 2, pp. 384–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. G. Nevin and T. Rajamohan, “Effect of topical application of virgin coconut oil on skin components and antioxidant status during dermal wound healing in young rats,” Skin Pharmacology and Physiology, vol. 23, no. 6, pp. 290–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. O. O. Dosumu, F. I. O. Duru, A. A. Osinubi, A. A. Oremosu, and C. C. Noronha, “Influence of virgin coconut oil (VCNO) on oxidative stress, serum testosterone and gonadotropic hormones (FSH, LH) in chronic ethanol ingestion,” Agriculture and Biology Journal of North America, vol. 6, pp. 1126–1132, 2010. View at Google Scholar
  18. K. G. Nevin and T. Rajamohan, “Virgin coconut oil supplemented diet increases the antioxidant status in rats,” Food Chemistry, vol. 99, no. 2, pp. 260–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. N. Kalu, “The ovariectomized rat model of postmenopausal bone loss,” Bone and Mineral, vol. 15, no. 3, pp. 175–191, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Frost and W. S. S. Jee, “On the rat model of human osteopenias and osteoporoses,” Bone and Mineral, vol. 18, no. 3, pp. 227–236, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Stepan, J. Pospichal, J. Presl, and V. Pacovsky, “Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women,” Bone, vol. 8, no. 5, pp. 279–284, 1987. View at Google Scholar · View at Scopus
  22. J. Y. Lee, Z. Qu-Petersen, B. Cao et al., “Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing,” Journal of Cell Biology, vol. 150, no. 5, pp. 1085–1099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Parfitt, M. K. Drezner, F. H. Glorieux et al., “Bone histomorphometry: standardization of nomenclature, symbols, and units,” Journal of Bone and Mineral Research, vol. 2, no. 6, pp. 595–610, 1987. View at Google Scholar · View at Scopus
  24. L. A. Eckel, “The ovarian hormone estradiol plays a crucial role in the control of food intake in females,” Physiology and Behavior, vol. 104, no. 4, pp. 517–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Torto, S. Boghossian, M. G. Dube, P. S. Kalra, and S. P. Kalra, “Central leptin gene therapy blocks ovariectomy-induced adiposity,” Obesity, vol. 14, no. 8, pp. 1312–1319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Norazlina, G. S. K. Sharon, N. S. Ahmad et al., “The effects of Cosmos caudatus on structural bone histomorphometry in ovariectomized rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 817814, 6 pages, 2012. View at Publisher · View at Google Scholar
  27. R. R. Recker, R. S. Weinstein, C. H. Chesnut et al., “Histomorphometric evaluation of daily and intermittent oral ibandronate in women with postmenopausal osteoporosis: results from the BONE study,” Osteoporosis International, vol. 15, no. 3, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Compston and P. I. Croucher, “Histomorphometric assessment of trabecular bone remodelling in osteoporosis,” Bone and Mineral, vol. 14, no. 2, pp. 91–102, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Estai, F. H. Suhaimi, S. Das et al., “Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: a radiological study,” Clinics, vol. 66, no. 5, pp. 865–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Tanaka, H. Mori, R. Kayasuga et al., “Long-term minodronic acid (ONO-5920/YM529) treatment suppresses increased bone turnover, plus prevents reduction in bone mass and bone strength in ovariectomized rats with established osteopenia,” Bone, vol. 43, no. 5, pp. 894–900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Peel, “Bone remodelling and disorders of bone metabolism,” Surgery, vol. 27, no. 2, pp. 70–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. Bagi, D. Wilkie, K. Georgelos, D. Williams, and D. Bertolini, “Morphological and structural characteristics of the proximal femur in human and rat,” Bone, vol. 21, no. 3, pp. 261–267, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Gal-Moscovici, M. Gal, and M. M. Popovtzer, “Treatment of osteoporotic ovariectomized rats with 24,25(OH) 2D3,” European Journal of Clinical Investigation, vol. 35, no. 6, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Tanizawa, A. Yamaguchi, Y. Uchiyama et al., “Reduction in bone formation and elevated bone resorption in ovariectomized rats with special reference to acute inflammation,” Bone, vol. 26, no. 1, pp. 43–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Seeman, “Pathogenesis of bone fragility in women and men,” Lancet, vol. 359, no. 9320, pp. 1841–1850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Pacifici, A. Carano, S. A. Santoro et al., “Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells,” Journal of Clinical Investigation, vol. 87, no. 1, pp. 221–228, 1991. View at Google Scholar · View at Scopus
  37. H. Bismar, I. Diel, R. Ziegler, and J. Pfeilschifter, “Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 11, pp. 3351–3355, 1995. View at Google Scholar · View at Scopus
  38. M. Horowitz, J. M. Wishart, A. G. Need, H. A. Morris, and B. E. C. Nordin, “Effects of norethisterone on bone related biochemical variables and forearm bone mineral in post-menopausal osteoporosis,” Clinical Endocrinology, vol. 39, no. 6, pp. 649–655, 1993. View at Google Scholar · View at Scopus
  39. V. A. Rifici and A. K. Khachadurian, “The inhibition of low-density lipoprotein oxidation by 17-β estradiol,” Metabolism, vol. 41, no. 10, pp. 1110–1114, 1992. View at Publisher · View at Google Scholar · View at Scopus
  40. M. T. R. Subbiah, B. Kessel, M. Agrawal, R. Rajan, W. Abplanalp, and Z. Rymaszewski, “Antioxidant potential of specific estrogens on lipid peroxidation,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 4, pp. 1095–1097, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Norazlina, S. Ima-Nirwana, M. T. Gapor, and B. A. K. Khalid, “Palm vitamin E is comparable to α-tocopherol in maintaining bone mineral density in ovariectomised female rats,” Experimental and Clinical Endocrinology and Diabetes, vol. 108, no. 4, pp. 305–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Yang, P. Madyastha, S. Bingel, W. Ries, and L. Key, “A new superoxide-generating oxidase in murine osteoclasts,” Journal of Biological Chemistry, vol. 276, no. 8, pp. 5452–5458, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. D. J. Morton, E. L. Barrett-Connor, and D. L. Schneider, “Vitamin C supplement use and bone mineral density in postmenopausal women,” Journal of Bone and Mineral Research, vol. 16, no. 1, pp. 135–140, 2001. View at Google Scholar · View at Scopus
  44. P. Srivastava and S. Durgaprasad, “Burn wound healing property of Cocos nucifera: an appraisal,” Indian Journal of Pharmacology, vol. 40, no. 4, pp. 144–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. B. A. Watkins and M. F. Seifert, “Food lipids and bone health,” in Food Lipid and Health, R. E. McDonald and D. B. Min, Eds., p. 101, Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar
  46. M. P. Lecart and J. Y. Reginster, “Current options for the management of postmenopausal osteoporosis,” Expert Opinion on Pharmacotherapy, vol. 12, no. 16, pp. 2533–2552, 2011. View at Google Scholar
  47. V. Shen, R. Birchman, R. Xu, R. Lindsay, and D. W. Dempster, “Short-term changes in histomorphometric and biochemical turnover markers and bone mineral density in estrogen and/or dietary calcium-deficient rats,” Bone, vol. 16, no. 1, pp. 149–156, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. A. N. Shuid, S. Mohamad, N. Mohamed et al., “Effects of calcium supplements on fracture healing in a rat osteoporotic model,” Journal of Orthopaedic Research, vol. 28, no. 12, pp. 1651–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. B. Che Man and A. M. Marina, “Medium chain triacylglycerol,” in Nutraceutical and Speciality Lipids and Their Co-Product, F. Shahidi, Ed., pp. 27–56, Taylor & Francis, Boca Raton, Fla, USA, 2006. View at Google Scholar
  50. A. M. Marina, Y. B. Che Man, S. A. H. Nazimah, and I. Amin, “Antioxidant capacity and phenolic acids of virgin coconut oil,” International Journal of Food Sciences and Nutrition, vol. 60, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. G. L. Hertog, P. C. H. Hollman, M. B. Katan, and D. Kromhout, “Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands,” Nutrition and Cancer, vol. 20, no. 1, pp. 21–29, 1993. View at Google Scholar · View at Scopus
  52. A. J. Parr and G. P. Bolwell, “Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile,” Journal of the Science of Food and Agriculture, vol. 80, pp. 985–1012, 2000. View at Google Scholar
  53. O. Benavente-Garcia, J. Castillo, F. R. Marin, A. Ortuno, and J. A. Del Rio, “Uses and properties of citrus flavonoids,” Journal of Agricultural and Food Chemistry, vol. 45, pp. 4505–4515, 1997. View at Google Scholar
  54. C. Manach, A. Mazur, and A. Scalbert, “Polyphenols and prevention of cardiovascular diseases,” Current Opinion in Lipidology, vol. 16, no. 1, pp. 77–84, 2005. View at Google Scholar · View at Scopus
  55. E. Middleton, C. Kandaswami, and T. C. Theoharides, “The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer,” Pharmacological Reviews, vol. 52, no. 4, pp. 673–751, 2000. View at Google Scholar · View at Scopus
  56. R. Puupponen-Pimiä, L. Nohynek, C. Meier et al., “Antimicrobial properties of phenolic compounds from berries,” Journal of Applied Microbiology, vol. 90, no. 4, pp. 494–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Samman, P. M. Lyons wall, and N. C. Cook, “Flavonoids and coronary heart disease,” in Dietary Perpectives, C. A. Rice-Evan and L. Packer, Eds., pp. 469–481, Marcel Dekker, 1998. View at Google Scholar
  58. A. Trzeciakiewicz, V. Habauzit, and M. N. Horcajada, “When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols,” Nutrition Research Reviews, vol. 22, no. 1, pp. 68–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Puel, A. Quintin, J. Mathey et al., “Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions,” Calcified Tissue International, vol. 77, no. 5, pp. 311–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. C. L. Shen, P. Wang, J. Guerrieri, J. K. Yeh, and J. S. Wang, “Protective effect of green tea polyphenols on bone loss in middle-aged female rats,” Osteoporosis International, vol. 19, no. 7, pp. 979–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Puel, J. Mathey, A. Agalias et al., “Dose-response study of effect of oleuropein, an olive oil polyphenol, in an ovariectomy/inflammation experimental model of bone loss in the rat,” Clinical Nutrition, vol. 25, no. 5, pp. 859–868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. E. Isaacs and H. Thormar, “Human milk lipids inactivated enveloped viruses,” in Breastfeeding, Nutrition, Infection and Infant Growth in Developed and Emerging Countries, S. A. Atkinson, L. A. Hanson, and R. K. Chandra, Eds., Arts Biomedical, St John’s Newfoundland, Canada, 1990. View at Google Scholar