Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 296432, 10 pages
http://dx.doi.org/10.1155/2012/296432
Research Article

Larix laricina, an Antidiabetic Alternative Treatment from the Cree of Northern Quebec Pharmacopoeia, Decreases Glycemia and Improves Insulin Sensitivity In Vivo

1Canadian Institutes of Health Research Team in Aboriginal Antidiabetic Medicines, Department of Pharmacology, University of Montreal, P.O. Box 6128, Downtown Station, Montreal, QC, Canada H3C 3J7
2Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology, University of Montreal, Montreal, QC, Canada H3C 3J7
3Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, QC, Canada G1V 0A6
4Montreal Diabetes Research Center, University of Montreal Hospital Center, Montreal, QC, Canada H1W 4A4
5Department of Biology and Center for Research in Biopharmaceuticals and Biotechnology, University of Ottawa, Ottawa, ON, Canada K1N 6N5

Received 10 March 2012; Accepted 7 May 2012

Academic Editor: Vincenzo De Feo

Copyright © 2012 Despina Harbilas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. PHAC, Obesity in Canada-Snapshot, 2009.
  2. PHAC, Obesity in Canada: A Joint Report from the Public Health Agency of Canada and the Canadian Institute for Health Information, 2011.
  3. PHAC, “Diabetes among first Nations, inuit, and Métis populations,” in Diabetes in Canada: Facts and Figures from a Public Health Perspective, chapter 6, 2011. View at Google Scholar
  4. Statcan, “Diabetes,” in Statistics Canada, 2010. View at Google Scholar
  5. D. Dannenbaum, E. Kuzmina, P. Lejeune, J. Torrie, and M. Gangbe, “Prevalence of diabetes and diabetes-related complications in first nations communities in Northern Quebec (Eeyou Istchee), Canada,” Canadian Journal of Diabetes, vol. 32, no. 1, pp. 46–52, 2008. View at Google Scholar · View at Scopus
  6. E. Kuzmina, P. Lejeune, D. Dannenbaum, and J. E. Torrie, “Cree diabetes information system (CDIS),” in Annual Report, J. E. Torrie, Ed., 2009. View at Google Scholar
  7. P. Brassard, E. Robinson, and C. Lavallee, “Prevalence of diabetes mellitus among the James Bay Cree of northern Quebec,” Canadian Medical Association Journal, vol. 149, no. 3, pp. 303–307, 1993. View at Google Scholar · View at Scopus
  8. E. Kuzmina and D. Dannenbaum, “Cree diabetes information system (CDIS),” in Annual Report, 2004. View at Google Scholar
  9. G. Légaré, Projet de Surveillance du Diabète Chez les Cris d'Eeyou Istchee, Institut National de Santé Publique du Québec et Conseil Cri de la Santé et des Services Sociaux de la Baie-James, Quebec, Canada, 2004.
  10. G. Légaré, D. Dannenbaum, J. Torrie, E. Kuzmina, and P. Linton, Effects of Diabetes on the Health of the Cree of Eeyou Istchee: What Can be Learned from Linking the Cree Diabetes Information System (CDIS) with the Quebec Diabetes Surveillance System (QDSS), Public Health Occasional, 2004, Edited by Bay IndspdQaCBoHaSSoJ.
  11. P. Boston, S. Jordan, E. MacNamara et al., “Using participatory action research to understand the meanings aboriginal canadians attribute to the rising incidence of diabetes,” Chronic Diseases in Canada, vol. 18, no. 1, pp. 5–12, 1997. View at Google Scholar · View at Scopus
  12. R. A. Hegele, “Genes and environment in type 2 diabetes and atherosclerosis in aboriginal Canadians,” Current atherosclerosis reports, vol. 3, no. 3, pp. 216–221, 2001. View at Google Scholar · View at Scopus
  13. T. K. Young, J. Reading, B. Elias, and J. D. O'Neil, “Type 2 diabetes mellitus in Canada's first nations: status of an epidemic in progress,” Canadian Medical Association Journal, vol. 163, no. 9, pp. 561–566, 2000. View at Google Scholar · View at Scopus
  14. K. Gray-Donald, E. Robinson, A. Collier, K. David, L. Renaud, and S. Rodrigues, “Intervening to reduce weight gain in pregnancy and gestational diabetes mellitus in Cree communities: an evaluation,” Canadian Medical Association Journal, vol. 163, no. 10, pp. 1247–1251, 2000. View at Google Scholar · View at Scopus
  15. C. Leduc, J. Coonishish, P. Haddad, and A. Cuerrier, “Plants used by the cree nation of eeyou istchee (Quebec, Canada) for the treatment of diabetes: a novel approach in quantitative ethnobotany,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 55–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. Eid, L. C. Martineau, A. Saleem et al., “Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant vaccinium vitis-idaea,” Molecular Nutrition and Food Research, vol. 54, no. 7, pp. 991–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. M. Eid, D. Vallerand, A. Muhammad, T. Durst, P. S. Haddad, and L. C. Martineau, “Structural constraints and the importance of lipophilicity for the mitochondrial uncoupling activity of naturally occurring caffeic acid esters with potential for the treatment of insulin resistance,” Biochemical Pharmacology, vol. 79, no. 3, pp. 444–454, 2010. View at Google Scholar
  18. M. H. Fraser, A. Cuerrier, P. S. Haddad, J. T. Arnason, P. L. Owen, and T. Johns, “Medicinal plants of Cree communities (Québec, Canada): antioxidant activity of plants used to treat type 2 diabetes symptoms,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 11, pp. 1200–1214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Harbilas, L. C. Martineau, C. S. Harris et al., “Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. C. Martineau, D. C. A. Adeyiwola-Spoor, D. Vallerand, A. Afshar, J. T. Arnason, and P. S. Haddad, “Enhancement of muscle cell glucose uptake by medicinal plant species of Canada's native populations is mediated by a common, Metformin-like mechanism,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 396–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. C. Martineau, J. Hervé, A. Muhamad et al., “Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action,” Planta Medica, vol. 76, no. 13, pp. 1439–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. L. C. Martineau, A. Muhammad, A. Saleem et al., “Anti-adipogenic activities of alnus incana and populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin,” Planta Medica, vol. 76, no. 14, pp. 1519–1524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Nistor Baldea, L. C. Martineau, A. Benhaddou-Andaloussi, J. T. Arnason, E. Levy, and P. S. Haddad, “Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia,” Journal of Ethnopharmacology, vol. 132, no. 2, pp. 473–482, 2010. View at Google Scholar
  24. D. C. A. Spoor, L. C. Martineau, C. Leduc et al., “Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 8-9, pp. 847–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Eberhardt, C. Ogden, M. Engelgau, B. Cadwell, A. A. Hedley, and S. H. Saydah, Prevalence of Overweight and Obesity Among Adults with Diagnosed Diabetes, CDC, and Department of Health and Human Services, 2004.
  26. A. R. Desilets, S. Dhakal-Karki, and K. C. Dunican, “Role of metformin for weight management in patients without type 2 diabetes,” The Annals of Pharmacotherapy, vol. 42, no. 6, pp. 817–826, 2008. View at Google Scholar
  27. S. M. Grundy, “Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy,” Nature Reviews Drug Discovery, vol. 5, no. 4, pp. 295–309, 2006. View at Publisher · View at Google Scholar
  28. M. L. Peyot, E. Pepin, J. Lamontagne et al., “β-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced β-cell mass,” Diabetes, vol. 59, no. 9, pp. 2178–2187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  30. R. Dallmann, S. Steinlechner, S. von Horsten, and T. Karl, “Stress-induced hyperthermia in the rat: comparison of classical and novel recording methods,” Laboratory Animals, vol. 40, no. 2, pp. 186–193, 2006. View at Google Scholar
  31. A. Benhaddou-Andaloussi, L. C. Martineau, D. Vallerand et al., “Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle, adipocyte and liver cells,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 148–157, 2009. View at Google Scholar
  32. D. Johnson and H. Lardy, “Isolation of liver or kidney mitochondria,” Methods in Enzymology, vol. 10, pp. 94–96, 1967. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Ligeret, A. Brault, D. Vallerand, Y. Haddad, and P. S. Haddad, “Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 507–514, 2008. View at Google Scholar
  34. IDF, One Adult in Ten has Diabetes in North America, 51.2 Million People in North America and the Caribbean will be Living with the Disease by 2030, International Diabetes Federation, Brussels, Belgium, 2011, Edited by Federation I. D., World Diabetes Day.
  35. B. Brunmair, K. Staniek, F. Gras et al., “Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?” Diabetes, vol. 53, no. 4, pp. 1052–1059, 2004. View at Google Scholar
  36. E. Elia, V. Sander, C. G. Luchetti et al., “The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice,” Molecular Human Reproduction, vol. 12, no. 8, pp. 475–481, 2006. View at Google Scholar
  37. Y. D. Kim, K. G. Park, Y. S. Lee et al., “Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP,” Diabetes, vol. 57, no. 2, pp. 306–314, 2008. View at Google Scholar
  38. J. M. Lee, W. Y. Seo, K. H. Song et al., “AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner,” The Journal of Biological Chemistry, vol. 285, no. 42, pp. 32182–32191, 2010. View at Google Scholar
  39. B. Viollet, F. Andreelli, S. B. Jorgensen et al., “Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models,” Biochemical Society Transactions, vol. 31, no. 1, pp. 216–219, 2003. View at Google Scholar
  40. W. T. Cefalu, “Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition,” ILAR News, vol. 47, no. 3, pp. 186–198, 2006. View at Google Scholar
  41. T. Jiang, Z. Wang, G. Proctor et al., “Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway,” The Journal of Biological Chemistry, vol. 280, no. 37, pp. 32317–32325, 2005. View at Google Scholar
  42. R. A. DeFronzo, “Pathogenesis of type 2 diabetes mellitus,” The Medical Clinics of North America, vol. 88, no. 4, pp. 787–835, 2004. View at Google Scholar
  43. R. Buettner, I. Ottinger, J. Scholmerich, and L. C. Bollheimer, “Preserved direct hepatic insulin action in rats with diet-induced hepatic steatosis,” American Journal of Physiology. Endocrinology and Metabolism, vol. 286, no. 5, pp. E828–E833, 2004. View at Google Scholar
  44. R. Buettner, J. Schölmerich, and L. C. Bollheimer, “High-fat diets: modeling the metabolic disorders of human obesity in rodents,” Obesity, vol. 15, no. 4, pp. 798–808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Crescenzo, F. Bianco, I. Falcone et al., “Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil,” Obesity. In press. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Abbasi, J. W. Chu, C. Lamendola et al., “Discrimination between obesity and insulin resistance in the relationship with adiponectin,” Diabetes, vol. 53, no. 3, pp. 585–590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. F. M. Finucane, J. Luan, N. J. Wareham et al., “Correlation of the leptin: adiponectin ratio with measures of insulin resistance in non-diabetic individuals,” Diabetologia, vol. 52, no. 11, pp. 2345–2349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Tschritter, A. Fritsche, C. Thamer et al., “Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism,” Diabetes, vol. 52, no. 2, pp. 239–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Weyer, T. Funahashi, S. Tanaka et al., “Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 1930–1935, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Yamamoto, H. Hirose, I. Saito et al., “Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population,” Clinical Science, vol. 103, no. 2, pp. 137–142, 2002. View at Google Scholar · View at Scopus
  51. A. Nachar, A. Saleem, D. Vallerand et al., “Beneficial effects in the liver of antidiabetic plants used in traditional medicine by the Cree of Bay James in Canada,” in Proceedings of the 10th Annual Oxford International Conference on the Science of Botanicals, Planta Medica, Mississipi, Miss, USA, 2011.
  52. E. S. Freedland, “Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: Implications for controlling dietary carbohydrates: a review,” Nutrition and Metabolism, vol. 1, no. 1, article 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. P. Chen, K. I. Mitchelhill, B. J. Michell et al., “AMP-activated protein kinase phosphorylation of endothelial NO synthase,” FEBS Letters, vol. 443, no. 3, pp. 285–289, 1999. View at Google Scholar
  54. N. Fujii, N. Jessen, L. J. Goodyear et al., “AMP-activated protein kinase and the regulation of glucose transport,” American Journal of Physiology. Endocrinology and Metabolism, vol. 291, no. 5, pp. E867–E877, 2006. View at Google Scholar
  55. N. Ruderman and M. Prentki, “AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome,” Nature Reviews. Drug Discovery, vol. 3, no. 4, pp. 340–351, 2004. View at Google Scholar
  56. W. W. Winder and D. G. Hardie, “AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes,” The American Journal of Physiology, vol. 277, no. 1, part 1, pp. E1–E10, 1999. View at Google Scholar
  57. C. Raffaella, B. Francesca, F. Italia, P. Marina, L. Giovanna, and I. Susanna, “Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance,” Obesity, vol. 16, no. 5, pp. 958–964, 2008. View at Google Scholar
  58. M. K. C. Hesselink, M. Mensink, and P. Schrauwen, “Lipotoxicity and mitochondrial dysfunction in type 2 diabetes,” Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, vol. 7, pp. 3–17, 2007. View at Google Scholar
  59. R. M. Reznick and G. I. Shulman, “The role of AMP-activated protein kinase in mitochondrial biogenesis,” The Journal of Physiology, vol. 574, part 1, pp. 33–39, 2006. View at Google Scholar
  60. W. W. Winder, “Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle,” Journal of Applied Physiology, vol. 91, no. 3, pp. 1017–1028, 2001. View at Google Scholar