Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 367698, 9 pages
Research Article

Wnt-Signaling-Mediated Antiosteoporotic Activity of Porcine Placenta Hydrolysates in Ovariectomized Rats

1Korea Institute of Oriental Medicine, Daejeon 305811, Republic of Korea
2Department of Food and Nutrition, Institutes of Basic Sciences, Hoseo University, Asan 336795, Republic of Korea

Received 23 August 2012; Accepted 18 November 2012

Academic Editor: Roja Rahimi

Copyright © 2012 Byoung-Seob Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Anti-osteoporotic effects of two types of porcine placenta hydrolysates (PPH) were evaluated in ovariectomized (OVX) rats orally administered PPH without (WPPH) or with (NPPH) ovarian hormones (1 g/kg bw/day). PPH groups were compared with OVX rats with estrogen replacement (0.1 mg/kg bw conjugated estrogen; EST), or dextrose (placebo; OVX-control) All rats received high-fat/calcium-deficient diets for 12 weeks. NPPH contained less estrogen and progesterone, but more essential amino acids, whereas the opposite was true for WPPH. NPPH decreased body weight and peri-uterine fat pads, and maintained uterus weight. NPPH rats had higher femur and lumbar spine bone mass density compared to controls; but less than those of EST rats. Serum phosphorus and urinary calcium and phosphorus levels were reduced in NPPH rats compared to OVX-controls. Serum bone-specific alkaline phosphatase, osteocalcin, and bone turnover marker levels were reduced NPPH rats compared to OVX-controls. WPPH produced results similar to those of NPPH, but less significant. Both NPPH and estrogen upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, while the expression of dickkopf-related protein 1 was suppressed. In conclusion, NPPH exerted anti-osteoporotic effects by activating osteogenesis and stimulating Wnt signaling, possibly mediated by the various amino acids and not ovarian hormones.