Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 519084, 12 pages
http://dx.doi.org/10.1155/2012/519084
Research Article

Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

Molecular Bioprospection Department, Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (Council of Scientific and Industrial Research), Lucknow 226015, India

Received 11 April 2011; Revised 10 August 2011; Accepted 1 September 2011

Academic Editor: Jenny M. Wilkinson

Copyright © 2012 Suaib Luqman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Somali, M. A. Bajneid, and S. S. Al-Fhaimani, “Chemical composition and characteristics of Moringa peregrina seeds and seeds oil,” Journal of the American Oil Chemists' Society, vol. 61, no. 1, pp. 85–86, 1984. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. S. Mughal, G. Ali, P. S. Srivastava, and M. Iqbal, “Improvement of drumstick (Moringa pterygosperma Gaertn.) A unique source of food and medicine through tissue culture,” Hamdard Medicus, vol. 42, pp. 37–42, 1999. View at Google Scholar
  3. J. F. Morton, “The horseradish tree, Moringa pterygosperma (Moringaceae)-A boon to Arid Lands?” Economic Botany, vol. 45, no. 3, pp. 318–333, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Souza and A. R. Kulkarni, “Comparative studies on nutritive values of tender foliage of seedlings and mature plants of Moringa oleifera Lam,” Journal of Economic and Taxonomic Botany, vol. 17, pp. 479–785, 1993. View at Google Scholar
  5. M. C. Palada, “Moringa (Moringa oleifera Lam.): a versatile tree crop with horticultural potential in the subtropical United States,” HortScience, vol. 31, no. 5, pp. 794–797, 1996. View at Google Scholar · View at Scopus
  6. L. J. Fuglie, The Miracle Tree: Moringa oleifera: Natural Nutrition for the Tropics, Church World Service, Dakar, Senegal, 1999.
  7. C. J. Dillard and J. Bruce German, “Phytochemicals: nutraceuticals and human health,” Journal of the Science of Food and Agriculture, vol. 80, no. 12, pp. 1744–1756, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Anwar and M. I. Bhanger, “Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan,” Journal of Agricultural and Food Chemistry, vol. 51, no. 22, pp. 6558–6563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Anwar, M. Ashraf, and M. I. Bhanger, “Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan,” JAOCS, Journal of the American Oil Chemists' Society, vol. 82, no. 1, pp. 45–51, 2005. View at Google Scholar · View at Scopus
  10. F. Anwar, S. Latif, M. Ashraf, and A. H. Gilani, “Moringa oleifera: a food plant with multiple medicinal uses,” Phytotherapy Research, vol. 21, no. 1, pp. 17–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Thurber and J. W. Fahey, “Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of innovations” theory,” Ecology of Food and Nutrition, vol. 48, no. 3, pp. 212–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Fahey, “Moringa oleifera: a Review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1,” Trees for Life Journal, vol. 1, aticle 5, 2005. View at Google Scholar
  13. P. Siddhuraju and K. Becker, “Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves,” Journal of Agricultural and Food Chemistry, vol. 51, no. 8, pp. 2144–2155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. P. Estrella, J. B. V. Mantaring, and G. Z. David, “A double blind randomised controlled trial on the use of malunggay (Moringa oleifera) for augmentation of the volume of breastmilk among non-nursing mothers of preterm infants,” The Philippine Journal of Pediatrics, vol. 49, pp. 3–6, 2000. View at Google Scholar
  15. S. K. Pal, P. K. Mukherjee, and B. P. Saha, “Studies on the antiulcer activity of Moringa oleifera leaf extract on gastric ulcer models in rats,” Phytotherapy Research, vol. 9, no. 6, pp. 463–465, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Pal, P. K. Mukherjee, K. Saha, M. Pal, and B. P. Saha, “Antimicrobial action of the leaf extract of Moringa oleifera Lam.,” Ancient Science of Life, vol. 14, pp. 197–199, 1995. View at Google Scholar
  17. P. Tahiliani and A. Kar, “Role of Moringa oleifera leaf extract in the regulation of thyroid hormone status in adult male and female rats,” Pharmacological Research, vol. 41, no. 3, pp. 319–323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. U. Dahot, “Vitamin contents of flowers and seeds of Moringa oleifera,” Pakistan Journal of Biochemistry, vol. 21, pp. 1–24, 1988. View at Google Scholar
  19. A. Caceres and S. Lopez, “Pharmacological properties of Moringa oleifera. 3. Effect of seed extracts in the treatment of experimental pyodermia,” Fitoterapia, vol. 62, no. 5, pp. 449–450, 1991. View at Google Scholar · View at Scopus
  20. A. Caceres, A. Saravia, S. Rizzo, L. Zabala, E. De Leon, and F. Nave, “Pharmacologic properties of Moringa oleifera. 2: screening for antispasmodic, antiinflammatory and diuretic activity,” Journal of Ethnopharmacology, vol. 36, no. 3, pp. 233–237, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. A. H. Gilani, K. Aftab, F. Shaheen et al., “Antispasmodic activity of active principle from Moringa oleifera,” in Natural Drugs and the Digestive Tract, F. Capasso and N. Mascolo, Eds., pp. 60–63, EMSI, Rome, Italy, 1992. View at Google Scholar
  22. S. Faizi, B. S. Siddiqui, R. Saleem, S. Siddiqui, K. Aftab, and A. U. H. Gilani, “Novel hypotensive agents, niazimin A, niazimin B, niazicin A and niazicin B from Moringa oleifera: isolation of first naturally occurring carbamates,” Journal of the Chemical Society, Perkin Transactions, no. 20, pp. 3035–3040, 1994. View at Google Scholar · View at Scopus
  23. S. Faizi, B. S. Siddiqui, R. Saleem, S. Siddiqui, K. Aftab, and A. U. H. Gilani, “Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure,” Journal of Natural Products, vol. 57, no. 9, pp. 1256–1261, 1994. View at Google Scholar · View at Scopus
  24. S. Faizi, B. S. Siddiqui, R. Saleem, K. Aftab, F. Shaheen, and A. U. H. Gilani, “Hypotensive constituents from the pods of Moringa oleifera,” Planta Medica, vol. 64, no. 3, pp. 225–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Faizi, B. S. Siddiqui, R. Saleem, S. Siddiqui, K. Aftab, and A. H. Gilani, “Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera,” Phytochemistry, vol. 38, no. 4, pp. 957–963, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ghasi, E. Nwobodo, and J. O. Ofili, “Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats,” Journal of Ethnopharmacology, vol. 69, no. 1, pp. 21–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Y. Dangi, C. I. Jolly, and S. Narayanan, “Antihypertensive activity of the total alkaloids from the leaves of Moringa oleifera,” Pharmaceutical Biology, vol. 40, no. 2, pp. 144–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. L. K. Mehta, R. Balaraman, A. H. Amin, P. A. Bafna, and O. D. Gulati, “Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits,” Journal of Ethnopharmacology, vol. 86, no. 2-3, pp. 191–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. H. Gilani, K. Aftab, A. Suria et al., “Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera,” Phytotherapy Research, vol. 8, no. 2, pp. 87–91, 1994. View at Google Scholar · View at Scopus
  30. B. R. Das, P. A. Kurup, and P. L. Rao, “Antibiotic principle from Moringa pterygosperma. VII. Antibacterial activity and chemical structure of compounds related to pterygospermin,” The Indian Journal of Medical Research, vol. 45, no. 2, pp. 191–196, 1957. View at Google Scholar · View at Scopus
  31. U. Eilert, B. Wolters, and A. Nahrstedt, “The antibiotic principle of seeds of Moringa oleifera and Moringa Stenopetala,” Planta Medica, vol. 42, no. 1, pp. 55–61, 1981. View at Google Scholar · View at Scopus
  32. A. Caceres, O. Cabrera, O. Morales, P. Mollinedo, and P. Mendia, “Pharmacological properties of Moringa oleifera. 1: preliminary screening for antimicrobial activity,” Journal of Ethnopharmacology, vol. 33, no. 3, pp. 213–216, 1991. View at Google Scholar · View at Scopus
  33. F. Nikkon, Z. A. Saud, M. H. Rehman, and M. E. Haque, “In vitro antimicrobial activity of the compound isolated from chloroform extract of Moringa oleifera Lam.,” Pakistan Journal of Biological Sciences, vol. 22, pp. 1888–1890, 2003. View at Google Scholar
  34. A. Murakami, Y. Kitazono, S. Jiwajinda, K. Koshimizu, and H. Ohigashi, “Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced epstein- barr virus activation,” Planta Medica, vol. 64, no. 4, pp. 319–323, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. A. P. Guevara, C. Vargas, H. Sakurai et al., “An antitumor promoter from Moringa oleifera Lam,” Mutation Research, vol. 440, no. 2, pp. 181–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Bharali, J. Tabassum, and M. R. Azad, “Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice,” Asian Pacific Journal of Cancer Prevention, vol. 4, no. 2, pp. 131–139, 2003. View at Google Scholar · View at Scopus
  37. A. H. Gilani, K. H. Janbaz, and B. H. Shah, “Quercetin exhibits hepatoprotective activity in rats,” Biochemical Society Transactions, vol. 25, article 85, 1997. View at Google Scholar
  38. A. Ndabigengesere, K. Subba Narasiah, and B. G. Talbot, “Active agents and mechanism of coagulation of turbid waters using Moringa oleifera,” Water Research, vol. 29, no. 2, pp. 703–710, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. K. A. Ghebremichael, K. R. Gunaratna, H. Henriksson, H. Brumer, and G. Dalhammar, “A simple purification and activity assay of the coagulant protein from Moringa oleifera seed,” Water Research, vol. 39, no. 11, pp. 2338–2344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. T. A. Oliveira, S. B. Silveira, I. M. Vasconcelos, B. S. Cavada, and R. A. Moreira, “Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck,” Journal of the Science of Food and Agriculture, vol. 79, no. 6, pp. 815–820, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. The Wealth of India (A Dictionary of Indian Raw Materials and Industrial Products), Raw Materials, Council of Scientific and Industrial Research, New Delhi, India, 1960.
  42. S. Luqman and S. I. Rizvi, “Protection of lipid peroxidation and carbonyl formation in proteins by capsaicin in human erythrocytes subjected to oxidative stress,” Phytotherapy Research, vol. 20, no. 4, pp. 303–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. I. Rizvi and S. Luqman, “Anti-oxidative property of capsaicin,” Medicinal Chemistry Research, vol. 11, no. 5, pp. 301–307, 2002. View at Google Scholar · View at Scopus
  44. S. Luqman, S. Kaushik, S. Srivastava et al., “Protective effect of medicinal plant extracts on biomarkers of oxidative stress in erythrocytes,” Pharmaceutical Biology, vol. 47, no. 6, pp. 483–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents,” American Journal of Enology and Viticulture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  46. S. Luqman, R. Kumar, S. Kaushik, S. Srivastava, M. P. Darokar, and S. P. S. Khanuja, “Antioxidant potential of the root of Vetiveria zizanioides (L.) Nash,” Indian Journal of Biochemistry and Biophysics, vol. 46, no. 1, pp. 122–125, 2009. View at Google Scholar · View at Scopus
  47. G. C. Yen and H. Y. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicity,” Journal of Agricultural and Food Chemistry, vol. 43, no. 1, pp. 27–32, 1995. View at Google Scholar · View at Scopus
  48. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. C. Chung, C. T. Chang, W. W. Chao, C. F. Lin, and S. T. Chou, “Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1,” Journal of Agricultural and Food Chemistry, vol. 50, no. 8, pp. 2454–2458, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Prieto, M. Pineda, and M. Aguilar, “Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E,” Analytical Biochemistry, vol. 269, no. 2, pp. 337–341, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Beutler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963. View at Google Scholar · View at Scopus
  52. H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods in Enzymology, vol. 186, pp. 407–421, 1990. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Joshua Allan, A. Damodaran, N. S. Deshmukh, K. S. Goudar, and A. Amit, “Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague-Dawley rats,” Food and Chemical Toxicology, vol. 45, pp. 1928–1937, 2007. View at Google Scholar
  54. D. Chanda, K. Shanker, A. Pal et al., “Safety evaluation of trikatu, a generic ayurvedic medicine in Charles Foster rats,” Journal of Toxicological Sciences, vol. 34, no. 1, pp. 99–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Y. Liu, C. C. Chen, W. H. Wang, J. D. Hsu, M. Y. Yang, and C. J. Wang, “The protective effects of Hibiscus sabdariffa extract on CCl 4-induced liver fibrosis in rats,” Food and Chemical Toxicology, vol. 44, no. 3, pp. 336–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Amin and A. A. Hamza, “Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats,” Life Sciences, vol. 77, no. 3, pp. 266–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Reglinski, S. Hoey, W. E. Smith, and R. D. Sturrock, “Cellular response to oxidative stress at sulfhydryl group receptor sites on the erythrocyte membrane,” The Journal of Biological Chemistry, vol. 263, no. 25, pp. 12360–12366, 1988. View at Google Scholar · View at Scopus
  58. P. Di Simplicio, E. Lupis, and R. Rossi, “Different mechanisms of formation of glutathione-protein mixed disulfides of diamide and tert-butyl hydroperoxide in rat blood,” Biochimica et Biophysica Acta, vol. 1289, no. 2, pp. 252–260, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Konukoglu, T. Akçay, and T. Erdemm, “Susceptibility of erythrocyte lipids to oxidation and erythrocyte antioxidant status in myocardial infarction,” Clinical Biochemistry, vol. 31, no. 8, pp. 667–671, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. A. López-Revuelta, J. I. Sánchez-Gallego, A. Hernández-Hernández, J. Sánchez-Yagüe, and M. Llanillo, “Increase in vulnerability to oxidative damage in cholesterol-modified erythrocytes exposed to t-BuOOH,” Biochimica et Biophysica Acta, vol. 1734, no. 1, pp. 74–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. G. C. Yen, “Relationship between antioxidant activity and maturity of peanut hulls,” Journal of Agricultural and Food Chemistry, vol. 41, no. 1, pp. 67–70, 1993. View at Google Scholar · View at Scopus
  62. R. N. Bennett, F. A. Mellon, N. Foidl et al., “Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L,” Journal of Agricultural and Food Chemistry, vol. 51, no. 12, pp. 3546–3553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. M. S. Taga, E. E. Miller, and D. E. Pratt, “Chia seeds as a source of natural lipid antioxidants,” Journal of the American Oil Chemists' Society, vol. 61, no. 5, pp. 928–931, 1984. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Luqman and R. Kumar, “Attenuation of hydroxyl radical formation by extracted constituent of Moringa oleifera lam.,” Current Chemical Biology, vol. 5, no. 3, pp. 213–218, 2011. View at Publisher · View at Google Scholar