Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 627256, 11 pages
http://dx.doi.org/10.1155/2012/627256
Research Article

Chloroform Fraction of Centratherum anthelminticum (L.) Seed Inhibits Tumor Necrosis Factor Alpha and Exhibits Pleotropic Bioactivities: Inhibitory Role in Human Tumor Cells

1Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 5 May 2011; Revised 14 October 2011; Accepted 7 December 2011

Academic Editor: E. Yesilada

Copyright © 2012 Aditya Arya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Ang-Lee, J. Moss, and C. S. Yuan, “Herbal medicines and perioperative care,” Journal of the American Medical Association, vol. 286, no. 2, pp. 208–216, 2001. View at Google Scholar · View at Scopus
  2. J. Lambert, J. Srivastava, and N. Vietmeyer, Medicinal Plants: Rescuing a Global Heritage, World Bank Publications, Washington, DC, USA, 1997.
  3. E. Ernst, “The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John's Wort, Ginseng, Echinacea, Saw Palmetto, and Kava,” Annals of Internal Medicine, vol. 136, no. 1, pp. 42–53, 2002. View at Google Scholar · View at Scopus
  4. A. Sparreboom, M. C. Cox, M. R. Acharya, and W. D. Figg, “Herbal remedies in the United States: potential adverse interactions with anticancer agents,” Journal of Clinical Oncology, vol. 22, no. 12, pp. 2489–2503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. K. Mehta, D. Mehta, and A. Itoriya, “Structure elucidation by NMR spectroscopy of a new acetylated saponin from Centratherum anthelminticum,” Carbohydrate Research, vol. 339, no. 18, pp. 2871–2874, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. Rastogi and B. N. Mehrotra, Compendium of Indian Medicinal Plants, vol. 1, Research Institute, Lucknow and Publication and Information Directorate, New Delhi, India, 1995.
  7. K. M. Nadkarni, The Indian Materia Medica, Bombay, India, 1927.
  8. Z. Iqbal, M. Lateef, A. Jabbar, M. S. Akhtar, and M. N. Khan, “Anthelmintic activity of Vernonia anthelmintica seeds against trichostrongylid nematodes of sheep,” Pharmaceutical Biology, vol. 44, no. 8, pp. 563–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Srivastava, R. Bartarya, S. Tonk, S. S. Srivastava, and K. M. Kumari, “Larvicidal activity of an indigenous plant, Centratherum anthelminticum,” Journal of Environmental Biology, vol. 29, no. 5, pp. 669–672, 2008. View at Google Scholar · View at Scopus
  10. A. Purnima, B. C. Koti, V. P. Tikare, A. H. M. Viswanathaswamy, A. H. M. Thippeswamy, and P. Dabadi, “Evaluation of analgesic and antipyretic activities of Centratherum anthelminticum (L) kuntze seed,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 4, pp. 461–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. C. Singhal, S. Sharma, and B. K. Mehta, “Antifilarial activity of Centratherum anthelminticum seed extracts on Setaria cervi,” Indian Journal of Experimental Biology, vol. 30, no. 6, pp. 546–548, 1992. View at Google Scholar · View at Scopus
  12. V. Ani and K. A. Naidu, “Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds,” European Food Research and Technology, vol. 226, no. 4, pp. 897–903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sharma and B. K. Mehta, “In vitro antimicrobial efficacy of Centratherum anthelminticum seeds extracts,” Journal of Hygiene Epidemiology Microbiology and Immunology, vol. 35, no. 2, pp. 157–161, 1991. View at Google Scholar · View at Scopus
  14. B. C. Koti and A. Purnima, “Diuretic activity of extracts of Centratherum anthelminticum,” International Journal of Green Pharmacy, vol. 2, no. 4, pp. 228–231, 2008. View at Google Scholar
  15. D. Bhatia, M. K. Gupta, A. Gupta, M. Singh, and G. Kaithwas, “Pharmacognosticol studies on seeds of Centratherum anthelminticum Kuntze,” Natural Product Radiance, vol. 7, no. 4, pp. 326–329, 2008. View at Google Scholar · View at Scopus
  16. G. Tian, U. Zhang, T. Zhang, F. Yang, and Y. Ito, “Separation of flavonoids from the seeds of Vernonia anthelmintica Willd by high-speed counter-current chromatography,” Journal of Chromatography A, vol. 1049, no. 1-2, pp. 219–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Akihisa, Y. Hayashi, G. W. Patterson, N. Shimizu, and T. Tamura, “4α-methylvernosterol and other sterols from Vernonia anthelmintica seeds,” Phytochemistry, vol. 31, no. 5, pp. 1759–1763, 1992. View at Google Scholar · View at Scopus
  18. B. K. Mehta, D. Mehta, and M. Verma, “Novel steroids from the seeds of Centratherum anthelminticum,” Natural Product Research, vol. 19, no. 5, pp. 435–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. G. Gomez-Cambronero, L. Sabater, J. Pereda et al., “Role of cytokines and oxidative stress in the pathophysiology of acute pancreatitis: therapeutical implications,” Current Drug Targets-Inflammation & Allergy, vol. 1, no. 4, pp. 393–403, 2002. View at Publisher · View at Google Scholar
  20. N. Turkmen, F. Sari, and Y. S. Velioglu, “Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods,” Food Chemistry, vol. 99, no. 4, pp. 835–841, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. W. Choi, S. C. Kim, S. S. Hwang et al., “Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison,” Plant Science, vol. 163, no. 6, pp. 1161–1168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  24. M. Achoui, D. Appleton, M. A. Abdulla, K. Awang, M. A. Mohd, and M. R. Mustafa, “In vitro and in vivo anti-inflammatory activity of 17-O-acetylacuminolide through the inhibition of cytokines, Nf-κB translocation and IKKβ activity,” PLoS One, vol. 5, no. 12, Article ID e15105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Raingeaud, S. Gupta, J. S. Rogers et al., “Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7420–7426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. I. M. Lee, N. R. Cook, J. E. Manson, J. E. Buring, and C. H. Hennekens, “β-carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health study,” Journal of the National Cancer Institute, vol. 91, no. 24, pp. 2102–2106, 1999. View at Google Scholar · View at Scopus
  28. J. Chandra, A. Samali, and S. Orrenius, “Triggering and modulation of apoptosis by oxidative stress,” Free Radical Biology and Medicine, vol. 29, no. 3-4, pp. 323–333, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Reilly, H. J. Schiller, and G. B. Bulkley, “Pharmacologic approach to tissue injury mediated by free radicals and other reactive oxygen metabolites,” The American Journal of Surgery, vol. 161, no. 4, pp. 488–503, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Itharat, P. J. Houghton, E. Eno-Amooquaye, P. J. Burke, J. H. Sampson, and A. Raman, “In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer,” Journal of Ethnopharmacology, vol. 90, no. 1, pp. 33–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. E. Taha, A. B. Abdul, R. Abdullah, T. A. T. Ibrahim, S. I. Abdelwahab, and S. Mohan, “Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet),” Chemico-Biological Interactions, vol. 186, no. 3, pp. 295–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, “Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation,” Molecular Pharmacology, vol. 69, no. 1, pp. 195–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Haefner, “NF-κB: arresting a major culprit in cancer,” Drug Discovery Today, vol. 7, no. 12, pp. 653–663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Baldwin Jr., “The NF-κB and IκB proteins: new discoveries and insights,” Annual Review of Immunology, vol. 14, pp. 649–681, 1996. View at Google Scholar · View at Scopus
  35. M. J. May and S. Ghosh, “Signal transduction through NF-κB,” Immunology Today, vol. 19, no. 2, pp. 80–88, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Mo, E. W. Son, S. R. Lee, S. M. Lee, D. H. Shin, and S. Pyo, “CML-1 inhibits TNF-α-induced NF-κB activation and adhesion molecule expression in endothelial cells through inhibition of IkBα kinase,” Journal of Ethnopharmacology, vol. 109, no. 1, pp. 78–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Collins, M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis, “Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers,” The FASEB Journal, vol. 9, no. 10, pp. 899–909, 1995. View at Google Scholar · View at Scopus
  38. K. C. Das and C. W. White, “Activation of NF-κB by antineoplastic agents. Role of protein kinase C,” Journal of Biological Chemistry, vol. 272, no. 23, pp. 14914–14920, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Jonsson, J. Gullberg, A. Nordström et al., “A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS,” Analytical Chemistry, vol. 76, no. 6, pp. 1738–1745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. S. Damiano, A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton, “Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines,” Blood, vol. 93, no. 5, pp. 1658–1667, 1999. View at Google Scholar · View at Scopus
  41. R. W. Johnstone, A. A. Ruefli, and S. W. Lowe, “Apoptosis: a link between cancer genetics and chemotherapy,” Cell, vol. 108, no. 2, pp. 153–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Xiao, A. A. Powolny, M. B. Moura et al., “Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26558–26569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Wang, M. G. Nair, G. M. Strasburg et al., “Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries,” Journal of Natural Products, vol. 62, no. 2, pp. 294–296, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. K. C. Lai, A. N. C. Huang, S. C. Hsu et al., “Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway,” Journal of Agricultural and Food Chemistry, vol. 58, no. 5, pp. 2935–2942, 2010. View at Publisher · View at Google Scholar · View at Scopus