Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 701927, 11 pages
http://dx.doi.org/10.1155/2012/701927
Research Article

Fractionation of an Extract of Pluchea odorata Separates a Property Indicative for the Induction of Cell Plasticity from One That Inhibits a Neoplastic Phenotype

1Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
2Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, AlthanstraBe 14, 1090 Vienna, Austria
3Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, AlthanstraBe 14, 1090 Vienna, Austria
4Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
5Institute for Ethnobiology, Playa Diana, San José, Petén, Guatemala
6Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, 56626 Andernach, Germany

Received 29 September 2011; Accepted 6 December 2011

Academic Editor: Ashok D. Taranalli

Copyright © 2012 Mareike Seelinger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction. Several studies demonstrated that anti-inflammatory remedies exhibit excellent anti-neoplastic properties. An extract of Pluchea odorata (Asteraceae), which is used for wound healing and against inflammatory conditions, was fractionated and properties correlating to anti-neoplastic and wound healing effects were separated. Methods. Up to six fractionation steps using silica gel, Sephadex columns, and distinct solvent systems were used, and eluted fractions were analysed by thin layer chromatography, apoptosis, and proliferation assays. The expression of oncogenes and proteins regulating cell migration was investigated by immunoblotting after treating HL60 cells with the most active fractions. Results. Sequential fractionations enriched anti-neoplastic activities which suppressed oncogene expression of JunB, c-Jun, c-Myc, and Stat3. Furthermore, a fraction (F4.6.3) inducing or keeping up expression of the mobility markers MYPT, ROCK1, and paxillin could be separated from another fraction (F4.3.7), which inhibited these markers. Conclusions. Wound healing builds up scar or specific tissue, and hence, compounds enhancing cell migration support this process. In contrast, successful anti-neoplastic therapy combats tumour progression, and thus, suppression of cell migration is mandatory.