Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 714512, 7 pages
http://dx.doi.org/10.1155/2012/714512
Review Article

Role of Medicinal Plants and Natural Products on Osteoporotic Fracture Healing

1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Basic Medical Science, Kulliyyah of Nursing, International Islamic University Malaysia, Level 2, Jalan Hospital Campus, P.O. Box 141, Pahang Darul Makmur, 25710 Kuantan, Malaysia

Received 13 June 2012; Accepted 17 July 2012

Academic Editor: Ima Nirwana Soelaiman

Copyright © 2012 Mohd Azri Abd Jalil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Piermattei, G. L. Flo, and C. E. DeCamp, Handbook of Small Animal Orthopedics and Fracture Repair, Saunders Elsevier, St. Louis, Mo, USA, 4th edition, 2006.
  2. B. Gullberg, O. Johnell, and J. A. Kanis, “World-wide projections for hip fracture,” Osteoporosis International, vol. 7, no. 5, pp. 407–413, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Li, R. J. Quigg, J. Zhou, J. T. Ryaby, and H. Wang, “Early signals for fracture healing,” Journal of Cellular Biochemistry, vol. 95, no. 1, pp. 189–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Giannoudis, C. Tzioupis, T. Almalki, and R. Buckley, “Fracture healing in osteoporotic fractures: is it really different? A basic science perspective,” Injury, vol. 38, supplement 1, pp. S90–S99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Jahagirdar and B. E. Scammell, “Principles of fracture healing and disorders of bone union,” Surgery, vol. 27, no. 2, pp. 63–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. Harwood, J. B. Newman, and A. L. R. Michael, “(ii) An update on fracture healing and non-union,” Orthopaedics and Trauma, vol. 24, no. 1, pp. 9–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Cosman, “The prevention and treatment of osteoporosis: a review,” Medscape General Medicine, vol. 7, no. 2, p. 73, 2005. View at Google Scholar · View at Scopus
  8. N. F. Ray, J. K. Chan, M. Thamer, and L. J. Melton, “Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation,” Journal of Bone and Mineral Research, vol. 12, no. 1, pp. 24–35, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. E. K. Stuermer, S. Sehmisch, T. Rack et al., “Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat,” Langenbeck's Archives of Surgery, vol. 395, no. 2, pp. 163–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. S. Simon, “Osteoporosis,” Clinics in Geriatric Medicine, vol. 21, no. 3, pp. 603–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. V. Avioli and R. Lindsay, “The female osteoporotic syndrome(s),” in Metabolic Bone Disease and Clinical Related Disorders, L. V. Avioli and S. M. Krane, Eds., W.B. Saunders, Philadelphia, Pa, USA, 1990. View at Google Scholar
  12. A. Kuttikat, R. Grant, and K. Chakravarty, “Management of osteoporosis,” Journal of Indian Rheumatology Association, vol. 12, pp. 104–118, 2005. View at Google Scholar
  13. K. Kaveh, R. Ibrahim, M. Emadi, M. Z. A. Bakar, and T. A. Ibrahim, “Osteoporosis and bone health,” Journal of Animal and Veterinary Advances, vol. 9, no. 6, pp. 1048–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Steiniche, C. Hasling, P. Charles, E. F. Eriksen, L. Mosekilde, and F. Melsen, “A randomized study on the effects of estrogen/gestagen or high dose oral calcium on trabecular bone remodeling in postmenopausel osteoporosis,” Bone, vol. 10, no. 5, pp. 313–320, 1989. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Parfitt, Z. H. Han, S. Palnitkar, D. S. Rao, M. S. Shih, and D. Nelson, “Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone,” Journal of Bone and Mineral Research, vol. 12, no. 11, pp. 1864–1873, 1997. View at Google Scholar · View at Scopus
  16. S. L. Hui, L. Zhou, R. Evans et al., “Rates of growth and loss of bone mineral in the spine and femoral neck in white females,” Osteoporosis International, vol. 9, no. 3, pp. 200–205, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. Looker, H. W. Wahner, W. L. Dunn et al., “Updated data on proximal femur bone mineral levels of US adults,” Osteoporosis International, vol. 8, no. 5, pp. 468–489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Heaney, “Vitamin D, nutritional deficiency, and the medical paradigm,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5107–5108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Webb, C. Pilbeam, N. Hanafin, and M. F. Holick, “An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston,” American Journal of Clinical Nutrition, vol. 51, no. 6, pp. 1075–1081, 1990. View at Google Scholar · View at Scopus
  20. L. M. Salamone, G. E. Dallal, D. Zantos, F. Makrauer, and B. Dawson-Hughes, “Contributions of vitamin D intake and seasonal sunlight exposure to plasma 25-hydroxyvitamin D concentration in elderly women,” American Journal of Clinical Nutrition, vol. 59, no. 1, pp. 80–86, 1994. View at Google Scholar · View at Scopus
  21. R. L. Prince, I. Dick, A. Devine et al., “The effects of menopause and age on calcitropic hormones: a cross- sectional study of 655 healthy women aged 35 to 90,” Journal of Bone and Mineral Research, vol. 10, no. 6, pp. 835–842, 1995. View at Google Scholar · View at Scopus
  22. R. Eastell, A. L. Yergey, N. E. Vieira, S. L. Cedel, R. Kumar, and B. L. Riggs, “Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action,” Journal of Bone and Mineral Research, vol. 6, no. 2, pp. 125–132, 1991. View at Google Scholar · View at Scopus
  23. X. P. Liu, F. L. Chen, and Y. J. Cheng, “Study of total isoflavone from Astragalus membranaceuson on the prevention of osteoporosis in rats,” Zhejiang JITCWM, vol. 15, no. 5, pp. 282–283, 2005. View at Google Scholar
  24. E. Li, D. J. Kong, X. H. Yang et al., “Effects of kidney-tonifying chinese medicinal herbs on prevention of rat osteoporosis,” Chinese Journal of Osteoporosis, vol. 8, no. 2, pp. 166–170, 2002. View at Google Scholar
  25. F. Li, D. Wang, Z. Jiang, X. Gao, and H. Zhao, “Activity stimulating osteoblast-like cells proliferation of some traditional Chinese medicinal herbs and other plants,” Pharmaceutical Biology, vol. 39, no. 5, pp. 351–356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ima-Nirwana, M. R. Elvy-Suhana, O. Faizah, and S. Farihah, “Effects of Piper sarmentosum on bone resorption and its relationship to plasma cortisol in rats,” Bone, vol. 44, pp. S79–S80, 2009. View at Google Scholar
  27. K. R. Kirtikar and B. D. Basu, IndianMedicinal Plants, Periodical Experts Book Agency, New Delhi, India, 1993.
  28. D. K. Deka, L. C. Lahon, J. Saikia, and A. Mukit, “Effect of Cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog: a preliminary study,” Indian Journal of Pharmacology, vol. 26, no. 1, pp. 44–45, 1994. View at Google Scholar · View at Scopus
  29. J. Suneetha, S. Prasanthi, B. V. A. Ramarao Naidu, and T. V. V. Seetharami Reddi, “Indigenous phytotherapy for bone fractures from Eastern Ghats,” Indian Journal of Traditional Knowledge, vol. 10, no. 3, pp. 550–553, 2011. View at Google Scholar · View at Scopus
  30. D. M. A. Jayaweera, Medicinal Plant (Indigenous and Exotic) Used in Ceylon, 1982.
  31. K. R. Kirtikar and B. D. Basu, Indian Medicinal Plant Vol. II, reprint ed. L.M. Basu, Allahabad, India, 1989.
  32. S. Ahmad Nazrun, A. B. Mohd Firdaus, A. S. Tajul Ariffin, M. Norliza, M. Norazlina, and S. Ima Nirwana, “The anti-osteoporotic effect of Eurycoma longifolia in aged orchidectomised rat model,” The Aging Male, vol. 14, no. 3, pp. 150–154, 2011. View at Google Scholar
  33. A. J. Jamia, “Malay traditional medicine: an overview of scientific and technological progress,” Tech Monitor, pp. 37–49, 2006. View at Google Scholar
  34. M. A. Estai, I. N. Soelaiman, A. N. Shuid, S. Das, A. M. Ali, and F. Suhaimi, “Histological changes in the fracture callus following the administration of water extract of Piper sarmentosum (Daun Kadok) in estrogen-deficient rats,” Iranian Journal of Medical Sciences, vol. 36, pp. 281–288, 2011. View at Google Scholar
  35. S. Khosla, S. Amin, and E. Orwoll, “Osteoporosis in men,” Endocrine Reviews, vol. 29, no. 4, pp. 441–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Khosla, “Update in male osteoporosis,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Sutton, L. Dian, and P. Guy, “Osteoporosis in men: an underrecognized and undertreated problem,” British Columbia Medical Journal, vol. 53, no. 10, pp. 535–540, 2011. View at Google Scholar
  38. B. Ettinger, A. Pressman, P. Sklarin, D. C. Bauer, J. A. Cauley, and S. R. Cummings, “Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 7, pp. 2239–2243, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. G. A. Greendale, S. Edelstein, and E. Barrett-Connor, “Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo study,” Journal of Bone and Mineral Research, vol. 12, no. 11, pp. 1833–1843, 1997. View at Google Scholar · View at Scopus
  40. S. Khosla and J. P. Bilezikian, “The role of estrogens in men and androgens in women,” Endocrinology and Metabolism Clinics of North America, vol. 32, no. 1, pp. 195–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. W. Slemenda, C. Longcope, L. Zhou, S. L. Hui, M. Peacock, and C. C. Johnston, “Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens,” Journal of Clinical Investigation, vol. 100, no. 7, pp. 1755–1759, 1997. View at Google Scholar · View at Scopus
  42. R. J. Lee, P. J. Saylor, and M. R. Smith, “Treatment and prevention of bone complications from prostate cancer,” Bone, vol. 48, no. 1, pp. 88–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Farzan, M. N. Tahmasebi, B. Aalami, M. R. Gits, and F. Frouzande, Textbook of Orthopaedics and Fractures, Tehran, Iran, 2003.
  44. E. Thomas, Andreoli, C. J. Charles, R. C. Carpenter, and J. l. Griggs, Cecil Essentials of Medicine, W.B. Saunders, Philadelphia, Pa, USA, 2004.
  45. A. A. Behfar, N. Sadeghi, M. R. Oveisi et al., “The plasma antioxidant activity of superoxide dismutase enzyme in osteoporosis,” Acta Medica Iranica, vol. 46, no. 6, pp. 441–446, 2008. View at Google Scholar · View at Scopus
  46. S. Verma and S. P. Singh, “Current and future status of herbal medicines,” Veterinary World, vol. 1, no. 11, pp. 347–350, 2008. View at Google Scholar
  47. S. Venkatesh, G. D. Reddy, B. M. Reddy, M. Ramesh, and A. V. N. A. Rao, “Antihyperglycemic activity of Caralluma attenuata,” Fitoterapia, vol. 74, no. 3, pp. 274–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Masood, “'Medicinal plants threatened by over-use',” Nature, vol. 385, no. 6617, p. 570, 1997. View at Google Scholar · View at Scopus
  49. Y. Zhang, M. Wong, and C. Wu, “Anti-osteoporotic effects of medicinal herbs and their mechanisms of action,” Asian Journal of Traditional Medicines, vol. 1, pp. 3–4, 2006. View at Google Scholar
  50. S. K. Zheng and R. Q. Nie, “Determination of treatment based in pathogenesis obtained through differentiation of symptoms and signs for osteoporosis,” Chinese Medical Journal, vol. 12, no. 14, pp. 1204–1205, 2005. View at Google Scholar
  51. W. Xu, “Research progression of TCM on prevention for osteoporosis,” Chinese Traditional Herbal Drugs, vol. 36, no. 2, pp. 314–315, 2005. View at Google Scholar
  52. S. Y. Wang and H. Jiao, “Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical's, and singlet oxygen,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5677–5684, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. S. C. Hao, P. Bi, K. L. Yu, J. H. Sun, and L. Q. Ding, “Electron microscopic studies on the effect of a Chinese medicine Fructus Ligustri Lucidi on the corticotrophs of rats hypophyses,” Journal of Tianjin Normal University, vol. 17, no. 3, pp. 49–52, 1997. View at Google Scholar
  54. D. Bown, Encyclopaedia of Herbs and Their Uses, Dorling Kindersley, London, UK, 1995.
  55. T. Nader, Human Physiology: Expression of Veda & Vedic Literature, Maharishi Vedic University Press, Vlodrop, The Netherlands, 1994.
  56. R. J. Carroll, “Complementry and alternative medicine history, definitions, and what is it today?” in Complementary and Alternative Medicine Ethics, the Patient, and the Physician, L. Snyder, Ed., pp. 7–44, Humana Press, Philadelphia, Pa, USA, 2007. View at Google Scholar
  57. S. S. Chopra, M. R. Patel, and R. P. Awadhiya, “Studies on cissus quadrangularis in experimental fracture repair: a histopathological study,” Indian Journal of Medical Research, vol. 64, no. 9, pp. 1365–1368, 1976. View at Google Scholar · View at Scopus
  58. M. Zakaria and M. A. Mohd, Traditional Malay Medicinal Plants, Penerbit Fajar Bakti, Sdn. Bhd, Kuala Lumpur, Malaysia, 1994.
  59. J. D. Gimlette, Malay Poisons and Charm Cures, Oxford University Press, New York, NY, USA, 1971.
  60. I. H. Burkill, Dictionary of the Economic Products of the Malay Peninsula, Publisher Crown Agents for the Colonies, London, UK, 1935.
  61. H. H. Ang and M. K. Sim, “Effects of Eurycoma longifolia Jack on sexual behaviour of male rats,” Archives of Pharmacal Research, vol. 20, no. 6, pp. 656–658, 1997. View at Google Scholar · View at Scopus
  62. K. L. Chan, C. Y. Choo, N. R. Abdullah, and Z. Ismail, “Antiplasmodial studies of Eurycoma longifolia Jack using the lactate dehydrogenase assay of Plasmodium falciparum,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 223–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. H. H. Ang and H. S. Cheang, “Effects of Eurycoma longifolia Jack on laevator ani muscle in both uncastrated and testosterone-stimulated castrated intact male rats,” Archives of Pharmacal Research, vol. 24, no. 5, pp. 437–440, 2001. View at Google Scholar · View at Scopus
  64. L. Katznelson, J. S. Finkelstein, D. A. Schoenfeld, D. I. Rosenthal, E. J. Anderson, and A. Klibanski, “Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 12, pp. 4358–4365, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Aminorroaya, S. Kelleher, A. J. Conway, L. P. Ly, and D. J. Handelsman, “Adequacy of androgen replacement influences bone density response to testosterone in androgen-deficient men,” European Journal of Endocrinology, vol. 152, no. 6, pp. 881–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Ali and J. M. Saad, Biochemical effect of Eurycoma longifolia Jack on the sexual behavior, fertility, sex hormone and glycolysis [Ph.D. dissertation], Department of Biochemistry, University of Malaya, 1993.
  67. D. M. Huber, A. C. Bendixen, P. Pathrose et al., “Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor,” Endocrinology, vol. 142, no. 9, pp. 3800–3808, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. B. C. Stone, “Notes on the genus Labisia Lindl (Myrsinaceae),” Malayan Nature Journal, vol. 42, pp. 43–51, 1988. View at Google Scholar
  69. A. J. Jamia, P. J. Houghton, S. R. Milligan, and J. Ibrahim, “The Oestrogenis and cytotoxic effects of the extracts of Labisia pumila var. alata and Labisia pumila var. pumila in vitro,” Malaysian Journal of Health Sciences, vol. 1, pp. 53–60, 1988. View at Google Scholar
  70. M. A. Rasadah and A. S. Zainon, Database on ASEAN Herbal and Medicinal Plants, vol. 1, ASEAN Publication, 2003.
  71. G. Bodeker, Health and Beauty from the Rainforest: Malaysian Traditions of Ramuan, Didier Millet, Kuala Lumpur, Malaysia, 1999.
  72. A. Fasihuddin, A. H. Rahman, and R. Hasmah, “Medicinal plants used by bajau community in sabah,” in Trends in Traditional Medicine Research, K. L. Chan et al., Ed., pp. 493–504, The School of Pharmaceutical Sciences, University of Science Malaysia, Penang, Malaysia, 1995. View at Google Scholar
  73. J. A. Jamal, P. J. Houghton, and S. R. Milligan, “Testing of Labisia pumila for oestrogenic activity using a recombinant yeast screen,” Journal of Pharmacy and Pharmacology, vol. 50, no. 9, p. 79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Girasole, G. Passeri, R. L. Jilka, and S. C. Manolagas, “Interleukin-11: a new cytokine critical for osteoclast development,” Journal of Clinical Investigation, vol. 93, no. 4, pp. 1516–1524, 1994. View at Google Scholar · View at Scopus
  76. R. L. Jilka, R. S. Weinstein, T. Bellido, A. M. Parfitt, and S. C. Manolagas, “Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 793–802, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. L. C. Hofbauer, C. R. Dunstan, T. C. Spelsberg, B. L. Riggs, and S. Khosla, “Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines,” Biochemical and Biophysical Research Communications, vol. 250, no. 3, pp. 776–781, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. M. F. Wan Ezumi, S. Siti Amrah, A. W. M. Suhaimi, and S. S. J. Mohsin, “Evaluation of the female reproductive toxicity of aqueous extract of Labisia pumila var. alata in rats,” Indian Journal of Pharmacology, vol. 39, no. 1, pp. 30–32, 2007. View at Google Scholar · View at Scopus
  79. J. Huang, Y. Ogihara, H. Zhang, N. Shimizu, and T. Takeda, “Triterpenoid saponins from Ardisia mamillata,” Phytochemistry, vol. 54, no. 8, pp. 817–822, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1315S–1321S, 1995. View at Google Scholar · View at Scopus
  81. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, no. 11, pp. 317–333, 1998. View at Google Scholar · View at Scopus
  82. A. Cassidy, B. Hanley, and R. M. Lamuela-Raventos, “Isoflavones, lignans and stilbenes: origins, etabolism and potential importance tohuman health,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 1044–1062, 2000. View at Google Scholar
  83. V. Subramaniam, M. I. Adenan, A. R. Ahmad, and R. Sahdan, “Natural antioxidants: Piper sarmentosum (Kadok) and Morinda elliptica (Mengkudu),” Malaysian Journal of Nutrition, vol. 9, pp. 41–51, 2003. View at Google Scholar
  84. P. Peungvicha, S. S. Thirawarapan, R. Temsiririrkkul, H. Watanabe, J. Kumar Prasain, and S. Kadota, “Hypoglycemic effect of the water extract of Piper sarmentosum in rats,” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 27–32, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. S. H. Zainal Ariffin, W. H. H. Wan Omar, M. F. Safian, Z. Z. Ariffin, S. Senafi, and R. Megat Abdul Wahab, “Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line,” Cancer Cell International, vol. 9, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. N. Horcajada, V. Habauzit, A. Trzeciakiewicz et al., “Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats,” Journal of Applied Physiology, vol. 104, no. 3, pp. 648–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. M. A. Estai, F. H. Suhaimi, S. Das et al., “Piper sarmentosum enhances fracture healing in ovariectomized osteoporotic rats: a radiological study,” Clinics, vol. 66, no. 5, pp. 865–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. J. M. Lean, J. T. Davies, K. Fuller et al., “A crucial role for thiol antioxidants in estrogen-deficiency bone loss,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 915–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Muthusami, I. Ramachandran, B. Muthusamy et al., “Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats,” Clinica Chimica Acta, vol. 360, no. 1-2, pp. 81–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. S. A. Sheweita and K. I. Khoshhal, “Calcium metabolism and oxidative stress in bone fractures: role of antioxidants,” Current Drug Metabolism, vol. 8, no. 5, pp. 519–525, 2007. View at Publisher · View at Google Scholar · View at Scopus