Table of Contents Author Guidelines Submit a Manuscript
Retracted

This article has been retracted as it is essentially identical in content with a previously published paper titled “A Review of the Efficacy and Safety of Banaba (Lagerstroemia speciosa L.) and Corosolic Acid”, by “Sidney J. Stohs, Howard Miller, Gilbert R. Kaats” in “Phytotherapy Research”, Volume 26, Issue 3, pages 317–324, March 2012.

Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 871495, 8 pages
http://dx.doi.org/10.1155/2012/871495
Review Article

Management of Diabetes and Its Complications with Banaba (Lagerstroemia speciosa L.) and Corosolic Acid

1Department of Clinical Nutrition, Suzuka University of Medical Science, Mie 510-0293, Japan
2Department of Acupuncture and Moxibustion, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan

Received 22 May 2012; Accepted 5 September 2012

Academic Editor: Benny Tan Kwong Huat

Copyright © 2012 Toshihiro Miura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Ulbricht, C. Dam, T. Milkin, E. Seamon, W. Weissner, and J. Woods, “Banaba (Lagerstroemia speciosa L.): an evidence-based systematic review by the natural standard research collaboration,” Journal of Herbal Pharmacotherapy, vol. 7, no. 1, pp. 99–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Park and J. S. Lee, “Banaba: the natural remedy as antidiabetic drug,” Biomedical Research, vol. 22, pp. 127–131, 2011. View at Google Scholar
  3. G. Klein, J. Kim, K. Himmeldirk, Y. Cao, and X. Chen, “Antidiabetes and anti-obesity activity of Lagerstroemia speciosa,” Evidence-based Complementary and Alternative Medicine, vol. 4, no. 4, pp. 401–407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Kim, A. Sy-Cordero, T. N. Graf, S. J. Brantley, M. F. Paine, and N. H. Oberlies, “Isolation and identification of intestinal CYP3A inhibitors from ranberry (Vaccinium macrocarpon) using human intestinal microsomes,” Planta Medica, vol. 77, no. 3, pp. 265–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. C. Aguirre, C. Delporte, N. Backhouse et al., “Topical anti-inflammatory activity of 2α-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae,” Bioorganic and Medicinal Chemistry, vol. 14, no. 16, pp. 5673–5677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Hu, L. Chen, Y. Xin, and Q. Cai, “Determination of corosolic acid in Eriobotrya japonica leaves by reversed-phase high performance liquid chromatography,” Se Pu, vol. 24, no. 5, pp. 492–494, 2006 (). View at Google Scholar · View at Scopus
  7. W. Hou, Y. Li, Q. Zhang et al., “Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors,” Phytotherapy Research, vol. 23, no. 5, pp. 614–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Lu, J. Chen, W. L. Li, and H. Q. Zhang, “Studies on the triterpenes from ioquat leaf (Eriobotrya japonica),” Zhang Yao Cai, vol. 31, pp. 1351–1354, 2008 (Chinese). View at Google Scholar
  9. H. Lu, C. Xi, J. Chen, and W. Li, “Determination of triterpenoid acids in leaves of Eriobotrya japonica collected at in different seasons,” Zhongguo Zhongyao Zazhi, vol. 34, no. 18, pp. 2353–2355, 2009. View at Google Scholar · View at Scopus
  10. J. M. Rollinger, D. V. Kratschmar, D. Schuster et al., “11β-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches,” Bioorganic and Medicinal Chemistry, vol. 18, no. 4, pp. 1507–1515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Banno, T. Akihisa, H. Tokuda et al., “Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 1, pp. 85–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. T. Thuong, B. S. Min, W. Jin et al., “Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis,” Biological and Pharmaceutical Bulletin, vol. 29, no. 4, pp. 830–833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Lee and P. T. Thuong, “Stimulation of glucose uptake by triterpenoids from Weigela subsessilis,” Phytotherapy Research, vol. 24, no. 1, pp. 49–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Y. Yang, J. A. Duan, P. Li, and S. H. Qian, “Chemical constituents of Glechoma longituba,” Yaoxue Xuebao, vol. 41, no. 5, pp. 431–434, 2006 (Chinese). View at Google Scholar · View at Scopus
  15. Y. Shen, Q. H. Wang, H. W. Lin, W. Shu, J. B. Zhou, and Z. Y. Li, “Study on chemical constituents of Potentilla chinensis Ser,” Zhong Yao Cai, vol. 29, no. 3, pp. 237–239, 2006. View at Google Scholar · View at Scopus
  16. S. H. Kang, Y. Q. Shi, and C. X. Yang, “Triterpenoids and steroids of root of Rubus biflorus,” Zhong Yao Cai, vol. 31, no. 11, pp. 1669–1671, 2008 (Chinese). View at Google Scholar · View at Scopus
  17. P. Liu, R. Deng, H. Duan, and W. Yin, “Chemical constituents from roots of Phlomis umbrosa,” Zhongguo Zhongyao Zazhi, vol. 34, no. 7, pp. 867–870, 2009 (Chinese). View at Google Scholar · View at Scopus
  18. Y. Ikeda, J. T. Chen, and T. Matsuda, “Effectiveness and safety of banabamin tablet containing extract from banaba in patients with mild type 2 diabetes,” Japanese Pharmacology and Therapeutics, vol. 27, no. 5, pp. 72–73, 1999 (Japanese). View at Google Scholar · View at Scopus
  19. Y. Ikeda, M. Noguchi, S. Kishi et al., “Blood glucose controlling effects and safety of single and long-term administration on the extract of banaba leaves,” Journal of Nutrition & Food, vol. 5, pp. 41–53, 2002 (Japanese). View at Google Scholar
  20. W. V. Judy, S. P. Hari, W. W. Stogsdill, J. S. Judy, Y. M. A. Naguib, and R. Passwater, “Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics: a dose-dependence study,” Journal of Ethnopharmacology, vol. 87, no. 1, pp. 115–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lieberman, R. Spahrs, A. Stanton, L. Martinez, and M. Grinder, “Weight loss, body measurements, and compliance: a 12-week total lifestyle intervention pilot study,” Alternative and Complementary Therapies, vol. 11, no. 6, pp. 307–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Tsuchibe, S. Kataumi, M. Mori, and H. Mori, “An inhibitory effect on the increase in the postprandial glucose by banaba extract capsule enriched corosolic acid,” Journal for the Integrated Study of Dietary Habits, vol. 17, pp. 255–259, 2006. View at Google Scholar
  23. M. Fukushima, F. Matsuyama, N. Ueda et al., “Effects of corosolic acid on post-challenge plasma glucose levels,” Diabetes Research and Clinical Practice, vol. 73, pp. 174–177, 2006. View at Google Scholar
  24. J. Q. Zheng, C. M. Zheng, and K. C. Lu, “Corosolic acid-induced acute kidney injury and lactic acidosis in a patient with impaired kidney function,” American Journal of Kidney Disease, vol. 56, no. 2, pp. 419–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Garcia, “On the hypoglycemic effect of a decoction of Lagerstroemia speciosa leaves (banaba) administered orally,” Philippine Medical Association, vol. 20, pp. 193–201, 1940. View at Google Scholar
  26. F. Garcia, “Distribution and deterioration of insulin-like principle in Lagerstroemia speciosa (banaba),” Acta Medica Philippina, vol. 3, pp. 99–104, 1941. View at Google Scholar
  27. T. Kakuda, I. Sakane, T. Takihara, Y. Ozaki, H. Takeuchi, and M. Kuroyanagi, “Hypoglycemic effect of extracts from Lagerstroemia speciosa L. Leaves in genetically diabetic KK-AY mice,” Bioscience, Biotechnology and Biochemistry, vol. 60, no. 2, pp. 204–208, 1996. View at Google Scholar · View at Scopus
  28. Y. Suzuki, K. Hayashi, I. Sukabe, and T. Kakuda, “Effects and mode of action of banaba (Lagerstroemia speciosa L.) leaf extracts on postprandial blood glucose in rats,” Japan Society of Nutrition and Food Science, vol. 54, pp. 131–137, 2001. View at Google Scholar
  29. Y. Yamaguchi, K. Yamada, N. Yoshikawa, K. Nakamura, J. Haginaka, and M. Kunitomo, “Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome,” Life Sciences, vol. 79, no. 26, pp. 2474–2479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Matsuura, Y. Yoshikawa, H. Masui, and M. Sano, “Suppression of glucose absorption by various health teas in rats,” Yakugaku Zasshi, vol. 124, no. 4, pp. 217–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Hong and J. M. Won, “Effects of malted barley extract and banaba extract on blood glucose levels in genetically diabetic mice,” Journal of Medicinal Food, vol. 7, no. 4, pp. 487–490, 2004. View at Google Scholar · View at Scopus
  32. K. Yamada, M. Hogokowa, and S. Fujimoto, “Effect of corosolic acid on gluconeogenesis in rat liver,” Diabetes Research and Clinical Practice, vol. 80, pp. 48–55, 2008. View at Google Scholar
  33. K. Yamada, M. Hosokawa, C. Yamada et al., “Dietary corosolic acid ameliorates obesity and hepatic steatosis in KK-Ay mice,” Biological and Pharmaceutical Bulletin, vol. 31, no. 4, pp. 651–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. C. Deocaris, R. R. Aguinaldo, J. L. dela Ysla, A. S. Asencion, and E. R. E. Mojica E, “Hypoglycemic activity of irradiated banaba (Lagerstroemia speciosa L.) leaves,” Journal of Applied Sciences Research, vol. 1, pp. 95–98, 2005. View at Google Scholar
  35. M. Y. Park, K. S. Lee, and M. K. Sung, “Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-α, PPAR-γ, and LPL mRNA expressions,” Life Sciences, vol. 77, no. 26, pp. 3344–3354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Miura, Y. Itoh, T. Kaneko et al., “Corosolic acid induces GLUT4 translocation in genetically type 2 diabetic mice,” Biological and Pharmaceutical Bulletin, vol. 27, no. 7, pp. 1103–1105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Miura, N. Ueda, K. Yamada et al., “Antidiabetic effects of corosolic acid in KK-Ay diabetic mice,” Biological and Pharmaceutical Bulletin, vol. 29, no. 3, pp. 585–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Takagi, T. Miura, C. Ishibashi et al., “Effect of corosolic acid on the hydrolysis of disaccharides,” Journal of Nutritional Science and Vitaminology, vol. 54, no. 3, pp. 266–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Takagi, T. Miura, E. Ishihara, T. Ishida, and Y. Chinzei, “Effect of corosolic acid on dietary hypercholesterolemia and hepatic steatosis in KK-Ay diabetic mice,” Biomedical Research, vol. 31, no. 4, pp. 213–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. K. Saha, M. N. H. Bhuiyan, K. Mazumder, and K. M. F. Haque, “Hypoglycemic activity of Lagerstroemia speciosa L. extract on streptozotocin-induced diabetic rat: underlying mechanism of action,” Bangladesh Journal of Pharmacology, vol. 4, no. 2, pp. 79–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Thuppia, P. Rabintossaporn, S. Saenthaweesuk, K. Ingkaninan, and S. Sireeratawong, “The hypoglycemic effect of water extract from leaves of Lagerstroemia speciosa L. in streptozotocin-induced diabetic rats,” Songklanakarin Journal of Science and Technology, vol. 31, no. 2, pp. 133–137, 2009. View at Google Scholar · View at Scopus
  42. S. M. Saumya and P. M. Basha, “Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozotocin-induced diabetic mice,” Indian Journal of Experimental Biology, vol. 49, no. 2, pp. 125–131, 2011. View at Google Scholar · View at Scopus
  43. N. C. Tanquilut, M. R. C. Tanquilut, M. A. C. Estacio, E. B. Torres, J. C. Rosario, and B. A. S. Reyes, “Hypoglycemic effect of Lagerstroemia speciosa (L.) Pers. on alloxan-induced diabetic mice,” Journal of Medicinal Plant Research, vol. 3, no. 12, pp. 1066–1071, 2009. View at Google Scholar · View at Scopus
  44. C. T. Musabayane, M. A. Tufts, and R. F. Mapanga, “Synergistic antihyperglycemic effects between plant-derived oleanolic acid and insulin in streptozotocin-induced diabetic rats,” Renal Failure, vol. 32, no. 7, pp. 832–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Unno, I. Sakane, T. Masumizu, M. Kohno, and T. Kakuda, “Antioxidant activity of water extracts of Lagerstroemia speciosa leaves,” Bioscience, Biotechnology, and Biochemistry, vol. 61, pp. 1772–1774, 1997. View at Google Scholar
  46. F. Liu, J. K. Kim, Y. Li, X. Q. Liu, J. Li, and X. Chen, “An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells,” Journal of Nutrition, vol. 131, no. 9, pp. 2242–2247, 2001. View at Google Scholar · View at Scopus
  47. T. Tanaka, H. H. Tong, Y. M. Xu, K. Ishimaru, G. Nonaka, and I. Nishioka, “Tannins and related compounds. CXVII. Isolation and characterization of three new ellagitannins, lagerstannins A, B and C, having a gluconic acid core, from Lagerstroemia speciosa (L.) Pers,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 11, pp. 2975–2980, 1992. View at Google Scholar · View at Scopus
  48. T. Hayashi, H. Maruyama, R. Kasai et al., “Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells,” Planta Medica, vol. 68, no. 2, pp. 173–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Li, J. Kim, J. Li et al., “Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway,” Biochemical and Biophysical Research Communications, vol. 336, no. 2, pp. 430–437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Hattori, N. Sukenobu, T. Sasaki et al., “Activation of insulin receptors by lagerstroemin,” Journal of Pharmacological Sciences, vol. 93, no. 1, pp. 69–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Bai, K. He, M. Roller et al., “Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells,” Journal of Agricultural and Food Chemistry, vol. 56, no. 24, pp. 11668–11674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Hosoyama, A. Sugimoto, Y. Suzuki, I. Sakane, and T. Kakuda, “Isolation and quantitative analysis of the α-amylase inhibitor in Lagerstroemia speciosa (L.) Pers. (Banaba),” Yakugaku Zasshi, vol. 123, no. 7, pp. 599–605, 2003 (Japanese). View at Google Scholar · View at Scopus
  53. K. Vijaykumar, P. B. Murthy, S. Kannababu, B. Syamasundar, and G. V. Subbaraju, “Quantitative determination of corosolic acid in Lagerstroemia speciosa leaves, extracts and dosage forms,” International Journal of Applied Science and Engineering, vol. 4, pp. 103–114, 2006. View at Google Scholar
  54. L. Shi, W. Zhang, Y. Y. Zhou et al., “Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation,” European Journal of Pharmacology, vol. 584, no. 1, pp. 21–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Ichikawa, H. Yagi, T. Tanaka, J. C. Cyong, and T. Masaki, “Lagerstroemia speciosa extract inhibit TNF-induced activation of nuclear factor-κB in rat cardiomyocyte H9c2 cells,” Journal of Ethnopharmacology, vol. 128, no. 1, pp. 254–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. S. Shim, S. U. Lee, S. Y. Ryu, Y. K. Min, and S. H. Kim, “Corosolic acid stimulates osteoblast differentiation by activating transcription factors and MAP kinases,” Phytotherapy Research, vol. 23, no. 12, pp. 1754–1758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Stohs, H. Miller, and G. R. Kaats, “A review of the efficacy and safety of Banaba (Lagerstroemia speciosa L.) and Corosolic acid,” Phytotherapy Research., vol. 26, pp. 317–324, 2012. View at Google Scholar