Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 872394, 8 pages
http://dx.doi.org/10.1155/2012/872394
Research Article

β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines

1French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 84990, Israel
2Dead Sea and Arava Science Center, the Dead Sea 86910, Israel
3Center for Sustainable Agriculture, Arava Institute for Environmental Studies, D.N. Hevel Eilot 88840, Israel
4The Unit of Medicinal and Aromatic Plants, Newe Ya'ar Research Center, Ramat Ishai 30095, Israel
5Department of Microbiology & Immunology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Received 3 January 2012; Accepted 1 February 2012

Academic Editor: David Baxter

Copyright © 2012 Eitan Amiel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Collins, T. Jacks, and N. P. Pavletich, “The cell cycle and cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 2776–2778, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Reddy, B. Odhav, and K. D. Bhoola, “Natural products for cancer prevention: a global perspective,” Pharmacology and Therapeutics, vol. 99, no. 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Klaunig and L. M. Kamendulis, “The role of oxidative stress in carcinogenesis,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 239–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  5. N. A. Thornberry, “Caspases: key mediators of apoptosis,” Chemistry and Biology, vol. 5, no. 5, pp. R97–R103, 1998. View at Google Scholar · View at Scopus
  6. W. C. Earnshaw, “Nuclear changes in apoptosis,” Current Opinion in Cell Biology, vol. 7, no. 3, pp. 337–343, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Nagata, “DNA degradation in development and programmed cell death,” Annual Review of Immunology, vol. 23, pp. 853–875, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. B. Wolf, M. Schuler, F. Echeverri, and D. R. Green, “Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation,” The Journal of Biological Chemistry, vol. 274, no. 43, pp. 30651–30656, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hsu, B. Singh, and G. Schuster, “Induction of apoptosis in oral cancer cells: agents and mechanisms for potential therapy and prevention,” Oral Oncology, vol. 40, no. 5, pp. 461–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Tartaglia, T. M. Ayres, G. H. W. Wong, and D. V. Goeddel, “A novel domain within the 55 kd TNF receptor signals cell death,” Cell, vol. 74, no. 5, pp. 845–853, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Pezzuto, “Plant-derived anticancer agents,” Biochemical Pharmacology, vol. 53, no. 2, pp. 121–133, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Graham, M. L. Quinn, D. S. Fabricant, and N. R. Farnsworth, “Plants used against cancer—an extension of the work of Jonathan Hartwell,” Journal of Ethnopharmacology, vol. 73, no. 3, pp. 347–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. da Rocha, R. M. Lopes, and G. Schwartsmann, “Natural products in anticancer therapy,” Current Opinion in Pharmacology, vol. 1, no. 4, pp. 364–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Sköld, A. Karlberg, M. Matura, and A. Börje, “The fragrance chemical β-caryophyllene—air oxidation and skin sensitization,” Food and Chemical Toxicology, vol. 44, no. 4, pp. 538–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Bauer, D. Garbe, and H. Ssurburg, Common Fragrance and Flavor Materials, VCH Publishers, Weinheim, Germany, 2nd edition, 1991.
  16. C. Ghelardini, N. Galeotti, L. Di Cesare Mannelli, G. Mazzanti, and A. Bartolini, “Local anaesthetic activity of β-caryophyllene$,” Farmaco, vol. 56, no. 5–7, pp. 387–389, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Sabulal, M. Dan, A. J. J et al., “Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity,” Phytochemistry, vol. 67, no. 22, pp. 2469–2473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. S. Fernandes, G. F. Passos, R. Medeiros et al., “Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea,” European Journal of Pharmacology, vol. 569, no. 3, pp. 228–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. L. Ashour, M. El-Readi, M. Youns et al., “Chemical composition and biological activity of the essential oil obtained from Bupleurum marginatum (Apiaceae),” Journal of Pharmacy and Pharmacology, vol. 61, no. 8, pp. 1079–1087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Kubo, S. K. Chaudhuri, Y. Kubo et al., “Cytotoxic and antioxidative sesquiterpenoids from Heterotheca inuloides,” Planta Medica, vol. 62, no. 5, pp. 427–430, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. F. N. Hepper, The Plants of Pehr Forsskal's Flora Aegyptiaco-Arabica. Collected on the Royal Danish Expedition to Egypt and the Yemen 1761–63, Royal Botanic Gardens, Kew, Copenhagen, Denmark, In Association with the Botanical Museum, 1994.
  22. M. Zohary, Geobotanical Foundations of the Middle East, Stuttgart, Germany, 1973.
  23. M. Zohary, Plants of the Bible : A Complete Handbook to All the Plants with 200 Full-Color Plates Taken in the Natural Habitat, Cambridge University Press, London, UK, 1982.
  24. F. W. Andrews, The Flowering Plants of the Anglo-Egyptian Sudan, T. Bumcle & CO., Arbroath, UK, 1952.
  25. L. Boulos, Flora of Egypt, Al Hadara, Cairo, Egypt, 1999.
  26. J. C. Willis, A Dicitionary of the Flowering Plants and Ferns, The University Press, Cambridge, Mass, USA, 1966.
  27. F. N. Hepper, Baker Encyclopedia on Bible Plants: Flowers and Trees, Fruit Plants, Vegetables, Ecology, Baker Book House, Grand Rapids, Mich, USA, 1992.
  28. E. Lev, “Reconstructed materia medica of the Medieval and Ottoman al-Sham,” Journal of Ethnopharmacology, vol. 80, no. 2-3, pp. 167–179, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Lev, “Drugs held and sold by pharmacists of the Jewish community of medieval (11–14th centuries) Cairo according to lists of materia medica found at the Taylor-Schechter Genizah collection, Cambridge,” Journal of Ethnopharmacology, vol. 110, no. 2, pp. 275–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Lev and Z. Amar, ““Fossils” of practical medical knowledge from medieval Cairo,” Journal of Ethnopharmacology, vol. 119, no. 1, pp. 24–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Lardos, “The botanical materia medica of the Iatrosophikon—a collection of prescriptions from a monastery in Cyprus,” Journal of Ethnopharmacology, vol. 104, no. 3, pp. 387–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Al-Howiriny, M. A. Al-Yahya, M. S. Al-Said, K. E. H. El-Tahir, and S. Rafatullah, “Studies on the pharmacological activities of an ethanol extract of balessan (Commiphora opobalsamum),” Pakistan Journal of Biological Sciences, vol. 7, pp. 1933–1936, 2004. View at Google Scholar
  33. M. R. González-Tejero, M. Casares-Porcel, C. P. Sánchez-Rojas et al., “Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia,” Journal of Ethnopharmacology, vol. 116, no. 2, pp. 341–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Dudai, O. Larkov, E. Putievsky et al., “Biotransformation of constituents of essential oils by germinating wheat seed,” Phytochemistry, vol. 55, no. 5, pp. 375–382, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Dudai, Y. Weinstein, M. Krup, T. Rabinski, and R. Ofir, “Citral is a new inducer of caspase-3 in tumor cell lines,” Planta Medica, vol. 71, no. 5, pp. 484–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Wolfson, M. Aboud, R. Ofir, Y. Weinstein, and S. Segal, “Modulation of protein kinase C and Ca2+ lipid-independent protein kinase in lymphoma induced by Moloney murine leukemia virus in BALB/c mice,” International Journal of Cancer, vol. 37, no. 4, pp. 589–593, 1986. View at Google Scholar · View at Scopus
  37. R. Ofir, L. Zhang, and J. M. Adams, “Interference with gene expression induces rapid apoptosis in p53-null T lymphoma cells,” Cell Death and Differentiation, vol. 6, no. 12, pp. 1216–1221, 1999. View at Google Scholar · View at Scopus
  38. J. Gertsch, M. Leonti, S. Raduner et al., “Beta-caryophyllene is a dietary cannabinoid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 26, pp. 9099–9104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Enari, H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and S. Nagata, “A caspase-activated DNase that degrades dna during apoptosis, and its inhibitor ICAD,” Nature, vol. 393, no. 6683, pp. 43–50, 1998. View at Google Scholar · View at Scopus
  40. T. M. Allen, “Ligand-targeted therapeutics in anticancer therapy,” Nature Reviews Cancer, vol. 2, no. 10, pp. 750–763, 2002. View at Publisher · View at Google Scholar · View at Scopus