Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 918956, 6 pages
http://dx.doi.org/10.1155/2012/918956
Research Article

Comparison of Effects of the Ethanolic Extracts of Brazilian Propolis on Human Leukemic Cells As Assessed with the MTT Assay

1Integrated Center for Childhood Onco-Hematological Investigation, State University of Campinas, P.O. Box 6141, 13083-970 Campinas, SP, Brazil
2Department of Food Science, College of Food Engineering, State University of Campinas, P.O. Box 6177, Campinas, SP, Brazil

Received 6 April 2011; Revised 8 June 2011; Accepted 24 July 2011

Academic Editor: Edwin L. Cooper

Copyright © 2012 Gilberto C. Franchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Greenaway, T. Scaysbrook, and F. R. Whatlev, “The composition and plant origins of propolis,” Bee Word, vol. 71, pp. 107–118, 1990. View at Google Scholar
  2. Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Vynograd, I. Vynograd, and Z. Sosnowski, “A comparative multi-centre study of the efficacy of propolis, acyclovir and placebo in the treatment of genital herpes (HSV),” Phytomedicine, vol. 7, no. 1, pp. 1–6, 2000. View at Google Scholar · View at Scopus
  4. Y. K. Park, I. Fukuda, H. Ashida et al., “Suppressive effects of ethanolic extracts from propolis and its main botanical origin on dioxin toxicity,” Journal of Agricultural and Food Chemistry, vol. 53, no. 26, pp. 10306–10309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Burdock, “Review of the biological properties and toxicity of bee propolis,” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. K. Park, S. M. Alencar, and C. L. Aguiar, “Botanical origin and chemical composition of Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 9, pp. 2502–2506, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. K. Park, J. F. Paredes-Guzman, C. L. Aguiar, S. M. Alencar, and F. Y. Fujiwara, “Chemical constituents in Baccharis dracunculifolia as the main botanical origin of South—eastern Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 52, no. 5, pp. 1100–1103, 2004. View at Google Scholar · View at Scopus
  8. H. Li, A. Kapur, J. X. Yang et al., “Antiproliferation of human prostate cancer cells by ethanolic extracts of Brazilian propolis and its botanical origin,” International Journal of Oncology, vol. 31, no. 3, pp. 601–606, 2007. View at Google Scholar · View at Scopus
  9. A. Daugsch, C. S. Moraes, P. Fort, and Y. K. Park, “Brazilian red propolis—Chemical composition and botanical origin,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 435–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. B. Lozzio and B. B. Lozzio, “Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome,” Blood, vol. 45, no. 3, pp. 321–334, 1975. View at Google Scholar · View at Scopus
  11. R. Gallagher, S. Collins, and J. Trujillo, “Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia,” Blood, vol. 54, no. 3, pp. 713–733, 1979. View at Google Scholar · View at Scopus
  12. M. Lanotte, V. Martin-Thouvenin, S. Najman, P. Balerini, F. Valensi, and R. Berger, “NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3),” Blood, vol. 77, no. 5, pp. 1080–1086, 1991. View at Google Scholar · View at Scopus
  13. G. Klein, B. Giovanella, and A. Westman, “An EBV genome negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection,” Intervirology, vol. 5, no. 6, pp. 319–334, 1975. View at Google Scholar · View at Scopus
  14. R. J. V. Pulvertaft, “Burkitt's tumour (African lymphoma),” The Lancet, vol. 283, no. 7327, pp. 238–240, 1964. View at Google Scholar · View at Scopus
  15. S. I. Kohno, J. Minowada, and A. A. Sandberg, “Chromosome evolution of near-haploid clones in an established human acute lymphoblastic leukemia cell line (NALM-16),” Journal of the National Cancer Institute, vol. 64, no. 3, pp. 485–493, 1980. View at Google Scholar · View at Scopus
  16. R. Hurwitz, J. Hozier, T. LeBien et al., “Characterization of a leukemic cell line of the pre-B phenotype,” International Journal of Cancer, vol. 23, no. 2, pp. 174–180, 1979. View at Google Scholar
  17. R. S. Stong, S. J. Korsmeyer, J. L. Parkin, D. C. Arthur, and J. H. Kersey, “Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics,” Blood, vol. 65, no. 1, pp. 21–31, 1985. View at Google Scholar · View at Scopus
  18. L. Naumovski, R. Morgan, F. Hecht, M. P. Link, B. E. Glader, and S. D. Smith, “Philadelphia chromosome-positive acute lymphoblastic leukemia cell lines without classical breakpoint cluster region rearrangement,” Cancer Research, vol. 48, no. 10, pp. 2876–2879, 1988. View at Google Scholar · View at Scopus
  19. M. Yoshinobu and G. D. Hans, “Establishment and characterization of human B cell precursor-leukemia cell lines,” Leukemia Research, vol. 22, no. 7, pp. 567–579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  21. R. Freshney, Culture of Animal Cells: A Manual of Basic Technique, New York, NY, USA, Alan R. Liss, 5th edition, 1987.
  22. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar · View at Scopus