Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 120732, 9 pages
http://dx.doi.org/10.1155/2013/120732
Review Article

Nigella sativa and Its Protective Role in Oxidative Stress and Hypertension

1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Clinical Oral Biology (Pharmacology), Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 1 November 2012; Accepted 31 January 2013

Academic Editor: Waris Qidwai

Copyright © 2013 Xin-Fang Leong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” The Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Khor, “Cardiovascular epidemiology in the Asia-Pacific region,” Asia Pacific Journal of Clinical Nutrition, vol. 10, no. 2, pp. 76–80, 2001. View at Google Scholar · View at Scopus
  3. H. H. Vorster, “The emergence of cardiovascular disease during urbanisation of Africans,” Public Health Nutrition, vol. 5, no. 1A, pp. 239–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. B. Mellen, S. K. Gao, M. Z. Vitolins, and D. C. Goff Jr., “Deteriorating dietary habits among adults with hypertension: dash dietary accordance, NHANES 1988–1994 and 1999–2004,” Archives of Internal Medicine, vol. 168, no. 3, pp. 308–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Schuur, J. C. van Switen, S. Schol-Gelok et al., “Genetic risk factors for cerebral small-vessel disease in hypertensive patients from a genetically isolated population,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 1, pp. 41–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. Shook, D. Lee, X. Sui et al., “Cardiorespiratory fitness reduces the risk of incident hypertension associated with a parental history of hypertension,” Hypertension, vol. 59, no. 6, pp. 1220–1224, 2012. View at Publisher · View at Google Scholar
  7. Institute for Public Health, The Third National Health and Morbidity Survey (NHMS III) 2006, Ministry of Health, Putrajaya, Malaysia, 2008.
  8. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Meddah, R. Ducroc, M. El Abbes-Faouzi et al., “Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats,” Journal of Ethnopharmacology, vol. 121, no. 3, pp. 419–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. N. Nagi and H. A. Almakki, “Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity,” Phytotherapy Research, vol. 23, no. 9, pp. 1295–1298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kocyigit, Y. Atamer, and E. Uysal, “The effect of dietary supplementation of Nigella sativa L. on serum lipid profile in rats,” Saudi Medical Journal, vol. 30, no. 7, pp. 893–896, 2009. View at Google Scholar · View at Scopus
  12. N. Taşar, Ö. Şehirli, Ö. Yiğner et al., “Protective effects of Nigella sativa against hypertension-induced oxidative stress and cardiovascular dysfunction in rats,” Marmara Pharmaceutical Journal, vol. 16, no. 2, pp. 141–149, 2012. View at Google Scholar
  13. A. Ghannadi, V. Hajhashemi, and H. Jafarabadi, “An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols,” Journal of Medicinal Food, vol. 8, no. 4, pp. 488–493, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Terzi, S. Coban, F. Yildiz et al., “Protective effects of Nigella sativa on intestinal ischemia-reperfusion injury in rats,” Journal of Investigative Surgery, vol. 23, no. 1, pp. 21–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. H. El-Tahir, M. M. Ashour, and M. M. AlHarbi, “The cardiovascular actions of the volatile oil of the black seed (Nigella sativa) in rats: elucidation of the mechanism of action,” General Pharmacology, vol. 24, no. 5, pp. 1123–1131, 1993. View at Google Scholar · View at Scopus
  16. K. E. H. El-Tahir and A. M. Ageel, “Effect of volatile oil of Nigella sativa on the arterial blood pressure and heart rate of the guinea-pig,” Saudi Pharmaceutical Journal, vol. 2, no. 4, pp. 163–168, 1994. View at Google Scholar
  17. K. E. H. El-Tahir, M. F. Al-Ajmi, and A. M. Al-Bekairi, “Some cardiovascular effects of the dethymoquinonated Nigella sativa volatile oil and its major components α-pinene and p-cymene in rats,” Saudi Pharmaceutical Journal, vol. 11, no. 3, pp. 104–110, 2003. View at Google Scholar · View at Scopus
  18. D. Peixoto-Neves, K. S. Silva-Alves, M. D. Gomes et al., “Vasorelaxant effects of the monoterpenic phenol isomers, carvacrol and thymol, on rat isolated aorta,” Fundamental and Clinical Pharmacology, vol. 24, no. 3, pp. 341–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Szentandrássy, G. Szigeti, C. Szegedi et al., “Effect of thymol on calcium handling in mammalian ventricular myocardium,” Life Sciences, vol. 74, no. 7, pp. 909–921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Zaoui, Y. Cherrah, M. A. Lacaille-Dubois, A. Settaf, H. Amarouch, and M. Hassar, “Diuretic and hypotensive effects of Nigella sativa on the spontaneously hypertensive rat,” Therapie, vol. 55, no. 3, pp. 379–382, 2000. View at Google Scholar · View at Scopus
  21. N. A. Zeggwagh, A. Moufid, A. Khaldi, J. B. Michel, and M. Eddouks, “Cardiovascular effect of Nigella sativa aqueous extract in spontaneously hypertensive rats,” in Chemistry and Medicinal Value, V. K. Singh and J. N. Govil, Eds., pp. 243–252, Studium Press, Houston, Tex, USA, 2009. View at Google Scholar
  22. M. M. Khattab and M. N. Nagi, “Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats,” Phytotherapy Research, vol. 21, no. 5, pp. 410–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Sayed, H. A. A. El-Latif, N. I. Eid, A. Z. Elsayed, and E. M. A. El-Kader, “Potential antihypertensive and antioxidative effects of Nigella sativa seeds or biomass and Syzygium aromaticum extracts on L-NAME-induced hypertensive rats,” Egyptian Journal of Pharmaceutical Sciences, vol. 50, pp. 127–146, 2009. View at Google Scholar
  24. F. R. Dehkordi and A. F. Kamkhah, “Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension,” Fundamental and Clinical Pharmacology, vol. 22, no. 4, pp. 447–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Meziti, H. Meziti, K. Boudiaf, B. Mustapha, and H. Bouriche, “Polyphenolic profile and antioxidant activities of Nigella sativa seed extracts in vitro and in vivo,” World Academy of Science, Engineering and Technology, vol. 64, no. 6, pp. 24–32, 2012. View at Google Scholar
  26. G. Al-Naqeeb, M. Ismail, and A. S. Al-Zubairi, “Fatty acid profile, α-tocopherol content and total antioxidant activity of oil extracted from Nigella sativa seeds,” International Journal of Pharmacology, vol. 5, no. 4, pp. 244–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Ali and G. Blunden, “Pharmacological and toxicological properties of Nigella sativa,” Phytotherapy Research, vol. 17, no. 4, pp. 299–305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Nergiz and S. Otles, “Chemical composition of Nigella sativa L. seeds,” Food Chemistry, vol. 48, no. 3, pp. 259–261, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. O. A. Ghosheh, A. A. Houdi, and P. A. Crooks, “High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.),” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 5, pp. 757–762, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. O. A. Badary, R. A. Taha, A. M. Gamal El-Din, and M. H. Abdel-Wahab, “Thymoquinone is a potent superoxide anion scavenger,” Drug and Chemical Toxicology, vol. 26, no. 2, pp. 87–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. N. Nagi, K. Alam, O. A. Badary, O. A. Al-Shabanah, H. A. Al-Sawaf, and A. M. Al-Bekairi, “Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism,” Biochemistry and Molecular Biology International, vol. 47, no. 1, pp. 153–159, 1999. View at Google Scholar · View at Scopus
  32. O. A. Badary, M. N. Nagi, O. A. Al-Shabanah, H. A. Al-Sawaf, M. O. Al-Sohaibani, and A. M. Al-Bekairi, “Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity,” Canadian Journal of Physiology and Pharmacology, vol. 75, no. 12, pp. 1356–1361, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. O. A. Al-Shabanah, O. A. Badary, M. N. Nagi, N. M. Al-Garably, A. C. Al-Rikabi, and A. M. Al-Bekairi, “Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity,” Journal of Experimental and Clinical Cancer Research, vol. 17, no. 2, pp. 193–198, 1998. View at Google Scholar · View at Scopus
  34. I. Kruk, T. Michalska, K. Lichszteld, A. Kladna, and H. Y. Aboul-Enein, “The effect of thymol and its derivatives on reactions generating reactive oxygen species,” Chemosphere, vol. 41, no. 7, pp. 1059–1064, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Mansour, M. N. Nagi, A. S. El-Khatib, and A. M. Al-Bekairi, “Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and dt-diaphorase in different tissues of mice: a possible mechanism of action,” Cell Biochemistry and Function, vol. 20, no. 2, pp. 143–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. N. Nagi and M. A. Mansour, “Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection,” Pharmacological Research, vol. 41, no. 3, pp. 283–289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ismail, G. Al-Naqeep, and K. W. Chan, “Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats,” Free Radical Biology and Medicine, vol. 48, no. 5, pp. 664–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Erşahin, H. Z. Toklu, D. Akakin, M. Yuksel, B. C. Yeğen, and G. Sener, “The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 153, no. 2, pp. 333–341, 2011. View at Publisher · View at Google Scholar
  39. B. Y. Sheikh and A. M. Mohamadin, “Thymoquinone a potential therapy for cerebral oxidative stress,” Asian Journal of Natural and Applied Sciences, vol. 1, no. 2, pp. 76–92, 2012. View at Google Scholar
  40. M. M. Sayed-Ahmed and M. N. Nagi, “Thymoquinone supplementation prevents the development of gentamicin-induced acute renal toxicity in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 5-6, pp. 399–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. L. Urso and P. M. Clarkson, “Oxidative stress, exercise, and antioxidant supplementation,” Toxicology, vol. 189, no. 1-2, pp. 41–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Grotto, L. Santa Maria, J. Valentini et al., “Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification,” Quimica Nova, vol. 32, no. 1, pp. 169–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. B. Ceretta, G. Z. Réus, H. M. Abelaira et al., “Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats,” Experimental Diabetes Research, vol. 2012, Article ID 302682, 8 pages, 2012. View at Publisher · View at Google Scholar
  44. A. M. Raut, A. N. Suryakar, and D. Mhaisekar, “Study of oxidative stress in relation with antioxidant status in chronic bronchitis,” International Journal of Medicine and Medical Sciences, vol. 4, no. 2, pp. 75–77, 2012. View at Google Scholar
  45. M. C. Armas-Padilla, M. J. Armas-Hernández, B. Sosa-Canache et al., “Nitric oxide and malondialdehyde in human hypertension,” The American Journal of Therapeutics, vol. 14, no. 2, pp. 172–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. S. Meera, “Oxidative imbalance in smokers with and without hypertension,” Biomedical Research, vol. 22, no. 3, pp. 267–272, 2011. View at Google Scholar · View at Scopus
  47. S. Verma and T. J. Anderson, “Fundamentals of endothelial function for the clinical cardiologist,” Circulation, vol. 105, no. 5, pp. 546–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. K. Nishizaka, M. A. Zaman, S. A. Green, K. Y. Renfroe, and D. A. Calhoun, “Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism,” Circulation, vol. 109, no. 23, pp. 2857–2861, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. X.-F. Leong, M. R. Mustafa, S. Das, and K. Jaarin, “Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil,” Lipids in Health and Disease, vol. 9, article 66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Peluffo, P. Calcerrada, L. Piacenza, N. Pizzano, and R. Radi, “Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers,” The American Journal of Physiology, vol. 296, no. 6, pp. H1781–H1792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. V. J. Dzau, “Tissue angiotensin and pathobiology of vascular disease a unifying hypothesis,” Hypertension, vol. 37, no. 4, pp. 1047–1052, 2001. View at Google Scholar · View at Scopus
  52. L. M. H. Wing, C. M. Reid, P. Ryan et al., “A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly,” The New England Journal of Medicine, vol. 348, no. 7, pp. 583–592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. L. C. van Vark, M. Bertrand, K. M. Akkerhuis et al., “Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin-angiotensin-aldosterone system inhibitors involving 158,998 patients,” European Heart Journal, vol. 33, no. 16, pp. 2088–2097, 2012. View at Publisher · View at Google Scholar
  54. S. Rajagopalan, S. Kurz, T. Münzel et al., “Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone,” Journal of Clinical Investigation, vol. 97, no. 8, pp. 1916–1923, 1996. View at Google Scholar · View at Scopus
  55. K. Z. Kȩdziora-Kornatowska, M. Luciak, and J. Paszkowski, “Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors,” IUBMB Life, vol. 49, no. 4, pp. 303–307, 2000. View at Google Scholar · View at Scopus
  56. R. T. Cowling, X. Zhang, V. C. Reese et al., “Effects of cytokine treatment on angiotensin II type 1A receptor transcription and splicing in rat cardiac fibroblasts,” The American Journal of Physiology, vol. 289, no. 3, pp. H1176–H1183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Ruiz-Ortega, M. Ruperez, O. Lorenzo et al., “Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney,” Kidney International, Supplement, vol. 62, no. 82, pp. S12–S22, 2002. View at Google Scholar · View at Scopus
  58. A. A. Elmarakby and J. D. Imig, “Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats,” Clinical Science, vol. 118, no. 4, pp. 291–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. L. Mehta and D. Li, “Facilitative interaction between angiotensin II and oxidised LDL in cultured human coronary artery endothelial cells,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 2, no. 1, supplement, pp. S70–S76, 2001. View at Google Scholar · View at Scopus
  60. D. Li, T. Saldeen, F. Romeo, and J. L. Mehta, “Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-κB,” Circulation, vol. 102, no. 16, pp. 1970–1976, 2000. View at Google Scholar · View at Scopus
  61. R. Rodrigo, W. Passalacqua, J. Araya, M. Orellana, and G. Rivera, “Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension,” Journal of Cardiovascular Pharmacology, vol. 42, no. 4, pp. 453–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Miyajima, S. Minatoguchi, Y. Ito et al., “Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension,” Hypertension Research, vol. 30, no. 4, pp. 307–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. T. J. Guzik, N. E. J. West, R. Pillai, D. P. Taggart, and K. M. Channon, “Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels,” Hypertension, vol. 39, no. 6, pp. 1088–1094, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. J. L. Cracowski, B. Degano, F. Chabot et al., “Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension,” Chest, vol. 142, no. 4, pp. 869–876, 2012. View at Google Scholar
  65. U. Landmesser, S. Dikalov, S. R. Price et al., “Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1201–1209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Zalba, G. S. José, M. U. Moreno et al., “Oxidative stress in arterial hypertension role of NAD(P)H oxidase,” Hypertension, vol. 38, no. 6, pp. 1395–1399, 2001. View at Google Scholar · View at Scopus
  67. X. Chen, R. M. Touyz, J. B. Park, and E. L. Schiffrin, “Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR,” Hypertension, vol. 38, no. 3, pp. 606–611, 2001. View at Google Scholar · View at Scopus
  68. E. L. Schiffrin, “Beyond blood pressure: the endothelium and atherosclerosis progression,” The American Journal of Hypertension, vol. 15, no. 10, pp. 115S–122S, 2002. View at Google Scholar · View at Scopus
  69. M. McIntyre, D. F. Bohr, and A. F. Dominiczak, “Endothelial function in hypertension: the role of superoxide anion,” Hypertension, vol. 34, no. 4 I, pp. 539–545, 1999. View at Google Scholar · View at Scopus
  70. M. Amanullah, G. S. Zaman, J. Rahman, and S. S. Rahman, “Lipid peroxidation and the levels of antioxidant enzymes in hypertension,” Free Radicals and Antioxidants, vol. 2, no. 2, pp. 12–18, 2012. View at Publisher · View at Google Scholar
  71. R. Rodrigo, H. Prat, W. Passalacqua, J. Araya, C. Guichard, and J. P. Bächler, “Relationship between oxidative stress and essential hypertension,” Hypertension Research, vol. 30, no. 12, pp. 1159–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. H. U. Nwanjo, G. Oze, M. C. Okafor, D. Nwosu, and P. Nwankpa, “Oxidative stress and non-enzymatic antioxidant status in hypertensive patients in Nigeria,” African Journal of Biotechnology, vol. 6, no. 14, pp. 1681–1684, 2007. View at Google Scholar
  73. M. Saravanakumar and B. Raja, “Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats,” European Journal of Pharmacology, vol. 671, no. 1–3, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Park, J. I. Shin, O. J. Park, and M. H. Kang, “Soy isoflavone supplementation alleviates oxidative stress and improves systolic blood pressure in male spontaneously hypertensive rats,” Journal of Nutritional Science and Vitaminology, vol. 51, no. 4, pp. 254–259, 2005. View at Google Scholar · View at Scopus
  75. P. Bogdanski, J. Suliburska, M. Szulinska, M. Stepien, D. Pupek-Musialik, and A. Jablecka, “Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients,” Nutritional Research, vol. 32, no. 6, pp. 421–427, 2012. View at Publisher · View at Google Scholar
  76. R. Rodrigo, H. Prat, W. Passalacqua, J. Araya, and J. P. Bächler, “Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension,” Clinical Science, vol. 114, no. 9-10, pp. 625–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Magyar, N. Szentandrássy, T. Bányász, L. Fülöp, A. Varró, and P. P. Nánási, “Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes,” European Journal of Pharmacology, vol. 487, no. 1–3, pp. 29–36, 2004. View at Publisher · View at Google Scholar