Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 132912, 8 pages
http://dx.doi.org/10.1155/2013/132912
Research Article

Cardiovascular Protective Effects of Adjunctive Alternative Medicine (Salvia miltiorrhiza and Pueraria lobata) in High-Risk Hypertension

1Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
2Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
3Room 186, Science Centre South Block, School of Life Sciences, Biochemistry Programme, The Chinese University of Hong Kong, Hong Kong
4Department of Medicine, Yan Chai Hospital, Hong Kong
5Department of Medicine, Alice Ho Miu Ling Nethersole Hopsital, Hong Kong
6School of Medical Sciences, The Chinese University of Hong Kong, Hong Kong

Received 11 December 2012; Accepted 29 January 2013

Academic Editor: Kashmira Nanji

Copyright © 2013 K. S. Woo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. L. Murray and A. D. Lopez, “Mortality by cause for eight regions of the world: Global Burden of Disease Study,” The Lancet, vol. 349, no. 9061, pp. 1269–1276, 1997. View at Google Scholar · View at Scopus
  2. P. M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton, and J. He, “Global burden of hypertension: analysis of worldwide data,” The Lancet, vol. 365, no. 9455, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Koren, R. B. Devereux, P. N. Casale, D. D. Savage, and J. H. Laragh, “Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension,” Annals of Internal Medicine, vol. 114, no. 5, pp. 345–352, 1991. View at Google Scholar · View at Scopus
  4. National Kidney Foundation, “K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease,” American Journal of Kidney Diseases, vol. 43, supplement 1, pp. S1–S290, 2004. View at Google Scholar
  5. T. Almgren, L. Wilhelmsen, O. Samuelsson, A. Himmelmann, A. Rosengren, and O. K. Andersson, “Diabetes in treated hypertension is common and carries a high cardiovascular risk: results from a 28-year follow-up,” Journal of Hypertension, vol. 25, no. 6, pp. 1311–1317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Mancia, G. de Backer, A. Dominiczak et al., “2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” European Heart Journal, vol. 28, pp. 1462–1536, 2007. View at Google Scholar
  7. X. Y. Ji, B. K. H. Tan, and Y. Z. Zhu, “Salvia miltiorrhiza and ischemic diseases,” Acta Pharmacologica Sinica, vol. 21, no. 12, pp. 1089–1094, 2000. View at Google Scholar · View at Scopus
  8. W. Y. Tam, P. Chook, M. Qiao et al., “The efficacy and tolerability of adjunctive alternative herbal medicine (Salvia miltiorrhiza and Pueraria lobata) on vascular function and structure in coronary patients,” Journal of Alternative and Complementary Medicine, vol. 15, no. 4, pp. 415–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. W. Jiang, K. M. Lau, H. M. Lam et al., “A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 133–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. P. Fung, L. H. Zeng, J. Wu et al., “Demonstration of the myocardial salvage effect of lithospermic acid B isolated from the aqueous extract of Salvia miltiorrhiza,” Life Sciences, vol. 52, no. 22, pp. PL239–PL244, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. Jiang, K. M. Lau, P. M. Hon, T. C. W. Mak, K. S. Woo, and K. P. Fung, “Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza,” Current Medicinal Chemistry, vol. 12, no. 2, pp. 237–246, 2005. View at Google Scholar · View at Scopus
  12. Y. Sun, P. C. Shaw, and K. P. Fung, “Molecular authentication of Radix Puerariae Lobatae and Radix Puerariae Thomsonii by ITS and 5S rRNA spacer sequencing,” Biological and Pharmaceutical Bulletin, vol. 30, no. 1, pp. 173–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Celermajer, K. E. Sorensen, V. M. Gooch et al., “Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis,” The Lancet, vol. 340, no. 8828, pp. 1111–1115, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Deanfield, A. Donald, C. Ferri et al., “Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the working group on endothelin and endothelial factors of the European society of hypertension,” Journal of Hypertension, vol. 23, no. 1, pp. 7–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. J. Anderson, A. Uehata, M. D. Gerhard et al., “Close relation of endothelial function in the human coronary and peripheral circulations,” Journal of the American College of Cardiology, vol. 26, no. 5, pp. 1235–1241, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Teragawa, K. Ueda, K. Matsuda et al., “Relationship between endothelial function in the coronary and brachial arteries,” Clinical Cardiology, vol. 28, no. 10, pp. 460–466, 2005. View at Google Scholar · View at Scopus
  17. S. Schroeder, M. D. Enderle, R. Ossen et al., “Noninvasive determination of endothelium-mediated vasodilation as a screening test for coronary artery disease: pilot study to assess the predictive value in comparison with angina pectoris, exercise electrocardiography, and myocardial perfusion imaging,” American Heart Journal, vol. 138, no. 4, pp. 731–739, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. K. E. Sorensen, D. S. Celermajer, D. J. Spiegelhalter et al., “Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility,” British Heart Journal, vol. 74, no. 3, pp. 247–253, 1995. View at Google Scholar · View at Scopus
  19. K. S. Woo, P. Chook, Y. I. Lolin, J. E. Sanderson, C. Metreweli, and D. S. Celermajer, “Folic acid improves arterial endothelial function in adults with hyperhomocysteinaemia,” American College of Cardiology Foundation, vol. 34, pp. 2002–2006, 1999. View at Publisher · View at Google Scholar
  20. K. S. Woo, P. Chook, C. W. Yu et al., “Effects of diet and exercise on obesity-related vascular dysfunction in children,” Circulation, vol. 109, no. 16, pp. 1981–1986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Salonen and J. T. Salonen, “Determinants of carotid intima-media thickness: a population-based ultrasonography study in Eastern Finnish men,” Journal of Internal Medicine, vol. 229, no. 3, pp. 225–231, 1991. View at Google Scholar · View at Scopus
  22. M. L. Bots, A. W. Hoes, P. J. Koudstaal, A. Hofman, and D. E. Grobbee, “Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study,” Circulation, vol. 96, no. 5, pp. 1432–1437, 1997. View at Google Scholar · View at Scopus
  23. K. S. Woo, P. Chook, O. T. Raitakari, B. McQuillan, J. Z. Feng, and D. S. Celermajer, “Westernization of Chinese adults and increased subclinical atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 10, pp. 2487–2493, 1999. View at Google Scholar · View at Scopus
  24. Y. Hochberg, “A sharper bonferroni procedure for multiple tests of significance,” Biometrika, vol. 75, no. 4, pp. 800–802, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Behrendt and P. Ganz, “Endothelial function: from vascular biology to clinical applications,” American Journal of Cardiology, vol. 90, no. 10, pp. 40L–48L, 2002. View at Google Scholar · View at Scopus
  26. D. H. O'Leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke, and S. K. Wolfson, “Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults,” The New England Journal of Medicine, vol. 340, no. 1, pp. 14–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Lorenz, H. S. Markus, M. L. Bots, M. Rosvall, and M. Sitzer, “Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis,” Circulation, vol. 115, no. 4, pp. 459–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Libby, P. M. Ridker, and G. K. Hansson, “Inflammation in Atherosclerosis: from pathophysiology to practice,” Journal of the American College of Cardiology, vol. 54, no. 23, pp. 2129–2138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Q. Zhang, Y. Bao, P. Wu, R. T. Rosen, and C. T. Ho, “Antioxidative components of tanshen (Salvia miltiorrhiza Bung),” Journal of Agricultural and Food Chemistry, vol. 38, no. 5, pp. 1194–1197, 1990. View at Google Scholar · View at Scopus
  30. X. L. Lei and G. C. Chiou, “Studies on cardiovascular actions of Salvia miltiorrhiza,” The American journal of Chinese medicine, vol. 14, no. 1-2, pp. 26–32, 1986. View at Google Scholar · View at Scopus
  31. L. Zhou, Z. Zuo, and M. S. S. Chow, “Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use,” Journal of Clinical Pharmacology, vol. 45, no. 12, pp. 1345–1359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. O. Cheng, “Cardiovascular effects of Danshen,” International Journal of Cardiology, vol. 121, no. 1, pp. 9–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. L. Fan, D. D. O'Keefe, and W. J. Powell, “Effect of puerarin on regional myocardial blood flow and cardiac hemodynamics in dogs with acute myocardial ischemia,” Yao Xue Xue Bao, vol. 19, no. 11, pp. 801–807, 1984. View at Google Scholar · View at Scopus
  34. G. Zhang and S. Fang, “Antioxidation of Pueraria lobata isoflavones (PLIs),” Zhong yao Cai, vol. 20, no. 7, pp. 358–360, 1997. View at Google Scholar · View at Scopus
  35. D. P. Sieveking, K. S. Woo, K. P. Fung, P. Lundman, S. Nakhla, and D. S. Celermajer, “Chinese herbs danshen and gegen modulate key early atherogenic events in vitro,” International Journal of Cardiology, vol. 105, no. 1, pp. 40–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. P. Fadini, S. V. D. Kreutzenberg, A. Coracina et al., “Circulating CD34+cells, metabolic syndrome, and cardiovascular risk,” European Heart Journal, vol. 27, pp. 2247–2255, 2006. View at Publisher · View at Google Scholar
  37. N. Werner, S. Kosiol, T. Schiegl et al., “Circulating endothelial progenitor cells and cardiovascular outcomes,” The New England Journal of Medicine, vol. 353, no. 10, pp. 999–1007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. T. W. C. Yip, C. K. Wong, P. Chook et al., “The impact of adjunctive danshen-gegen treatment on endothelial progenitor cell activity in hypertensive subjects,” The Journal of the Hong Kong College of Cardiology, vol. 16, p. 1, 2008, abstract 18. View at Google Scholar
  39. K. Chan, A. C. T. Lo, J. H. K. Yeung, and K. S. Woo, “The effects of Danshen (Salvia miltiorrhiza) on warfarin pharmacodynamics and pharmacokinetics of warfarin enantiomers in rats,” Journal of Pharmacy and Pharmacology, vol. 47, no. 5, pp. 402–406, 1995. View at Google Scholar · View at Scopus
  40. D. Gupta, M. Jalali, A. Wells, and A. Dasgupta, “Drug-herb interactions: unexpected suppression of free Danshen concentrations by salicylate,” Journal of Clinical Laboratory Analysis, vol. 16, no. 6, pp. 290–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Y. K. Chan, “Interaction between warfarin and danshen (Salvia miltiorrhiza),” Annals of Pharmacotherapy, vol. 35, no. 4, pp. 501–504, 2001. View at Google Scholar · View at Scopus
  42. L. S. Tam, T. Y. K. Chan, W. K. Leung, and J. A. J. H. Critchley, “Warfarin interactions with Chinese traditional medicines: Danshen and methyl salicylate medicated oil,” Australian and New Zealand Journal of Medicine, vol. 25, no. 3, p. 258, 1995. View at Google Scholar · View at Scopus
  43. Q. Jinping, H. Peiling, L. Yawei, and Z. Abliz, “Effects of the aqueous extract from Salvia miltiorrhiza Bge on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats,” Journal of Pharmacy and Pharmacology, vol. 55, no. 8, pp. 1163–1167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. T. O. Cheng, “Herbal interactions with cardiac drugs,” Archives of Internal Medicine, vol. 160, no. 6, pp. 870–871, 2000. View at Google Scholar · View at Scopus
  45. D. G. Kang, Y. G. Yun, J. H. Ryoo, and H. S. Lee, “Anti-hypertensive effect of water extract of Danshen on renovascular hypertension through inhibition of the renin angiotensin system,” American Journal of Chinese Medicine, vol. 30, no. 1, pp. 87–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Sun, S. H. Huang, B. K. H. Tan et al., “Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction,” Life Sciences, vol. 76, no. 24, pp. 2849–2860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Wang, L. Wang, Z. Y. Xiong, B. Mao, and T. Q. Li, “Compound salvia pellet, a traditional Chinese medicine, for the treatment of chronic stable angina pectoris compared with nitrates: a meta-analysis,” Medical Science Monitor, vol. 12, no. 1, pp. SR1–SR7, 2006. View at Google Scholar · View at Scopus
  48. T. O. Cheng, “Danshen: what every cardiologist should know about this Chinese herbal drug,” International Journal of Cardiology, vol. 110, no. 3, pp. 411–412, 2006. View at Publisher · View at Google Scholar · View at Scopus