Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 175629, 12 pages
http://dx.doi.org/10.1155/2013/175629
Research Article

Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats

1Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
2Department of Medicine, National Defense Medical Center, Taipei 114, Taiwan
3Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
4Department of Physical Therapy, Hungkuang University, Taichung 43302, Taiwan
5Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
6Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
7Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan

Received 27 December 2012; Revised 14 March 2013; Accepted 10 April 2013

Academic Editor: Cynthia R. Long

Copyright © 2013 Chiung-Chyi Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Rochkind and G. E. Ouaknine, “New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies),” Neurological Research, vol. 14, no. 1, pp. 2–11, 1992. View at Google Scholar · View at Scopus
  2. J. Ijkema-Paassen, K. Jansen, A. Gramsbergen, and M. F. Meek, “Transection of peripheral nerves, bridging strategies and effect evaluation,” Biomaterials, vol. 25, no. 9, pp. 1583–1592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Nichols, M. J. Brenner, I. K. Fox et al., “Effects of motor versus sensory nerve grafts on peripheral nerve regeneration,” Experimental Neurology, vol. 190, no. 2, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna, and K. W. Leong, “Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers,” Journal of Biomedical Materials Research A, vol. 68, no. 2, pp. 286–295, 2004. View at Google Scholar · View at Scopus
  5. S. E. Mackinnon and A. L. Dellon, “Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube,” Plastic and Reconstructive Surgery, vol. 85, no. 3, pp. 419–424, 1990. View at Google Scholar · View at Scopus
  6. P. J. Evans, S. E. Mackinnon, A. D. O. Levi et al., “Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration,” Muscle and Nerve, vol. 21, no. 11, pp. 1507–1522, 1998. View at Google Scholar
  7. D. Gigo-Benato, S. Geuna, and S. Rochkind, “Phototherapy for enhancing peripheral nerve repair: a review of the literature,” Muscle and Nerve, vol. 31, no. 6, pp. 694–701, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Mendonça, C. H. Barbieri, and N. Mazzer, “Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats,” Journal of Neuroscience Methods, vol. 129, no. 2, pp. 183–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. V. V. M. Raso, C. H. Barbieri, N. Mazzer, and V. S. Fasan, “Can therapeutic ultrasound influence the regeneration of peripheral nerves?” Journal of Neuroscience Methods, vol. 142, no. 2, pp. 185–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. C. Yang, C. C. Shen, T. B. Huang, S. H. Chang, H. C. Cheng, and B. S. Liu, “Characteristics and biocompatibility of a biodegradable genipin-cross-linked gelatin/β-tricalcium phosphate reinforced nerve guide conduit,” Journal of Biomedical Materials Research B, vol. 95, no. 1, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. C. Yang, C. C. Shen, H. C. Cheng, and B. S. Liu, “Sciatic nerve repair by reinforced nerve conduits made of gelatin-tricalcium phosphate composites,” Journal of Biomedical Materials Research A, vol. 96, no. 2, pp. 288–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plastic and Reconstructive Surgery, vol. 83, no. 1, pp. 129–136, 1989. View at Google Scholar · View at Scopus
  13. R. A. Mclean, W. L. Sanders, and W. W. Stroup, “A unified approach to mixed linear models,” The American Statistician, vol. 5, pp. 54–64, 1991. View at Google Scholar
  14. P. Plikk, S. Målberg, and A. C. Albertsson, “Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration,” Biomacromolecules, vol. 10, no. 5, pp. 1259–1264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Keilhoff, F. Stang, G. Wolf, and H. Fansa, “Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction,” Biomaterials, vol. 24, no. 16, pp. 2779–2787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Bagis, U. Comelekoglu, G. Sahin, B. Buyukakilli, C. Erdogan, and A. Kanik, “Acute electrophysiologic effect of pulsed gallium-arsenide low energy laser irradiation on configuration of compound nerve action potential and nerve excitability,” Lasers in Surgery and Medicine, vol. 30, no. 5, pp. 376–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. A. Vladimirov, A. N. Osipov, and G. I. Klebanov, “Photobiological principles of therapeutic applications of laser radiation,” Biochemistry, vol. 69, no. 1, pp. 81–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Abergel, R. F. Lyons, and J. C. Castel, “Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures,” Journal of Dermatologic Surgery and Oncology, vol. 13, no. 2, pp. 127–133, 1987. View at Google Scholar · View at Scopus
  19. J. Walker, “Relief from chronic pain by low power laser irradiation,” Neuroscience Letters, vol. 43, no. 2-3, pp. 339–344, 1983. View at Google Scholar · View at Scopus
  20. V. V. Monte-Raso, C. H. Barbieri, N. Mazzer, A. C. Yamasita, and G. Barbieri, “Is the sciatic functional index always reliable and reproducible?” Journal of Neuroscience Methods, vol. 170, no. 2, pp. 255–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Joel, B. M. G. De Lisa, and N. E. Walsh, Physical Medicine and Rehabilitation: Principles and Practice, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2005.
  22. L. B. Dahlin, “The biology of nerve injury and repair,” Journal of the American Society for Surgery of the Hand, vol. 4, no. 3, pp. 143–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Schwartz, C. Brodie, E. Appel, G. Kazimirsky, and A. Shainberg, “Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures,” Journal of Photochemistry and Photobiology B, vol. 66, no. 3, pp. 195–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. H. F. I. Van Breugel and P. R. Bar, “He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner,” Journal of Neurocytology, vol. 22, no. 3, pp. 185–190, 1993. View at Google Scholar · View at Scopus
  25. K. Bhatheja and J. Field, “Schwann cells: origins and role in axonal maintenance and regeneration,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 12, pp. 1995–1999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Karu, “Derepression of the genome after irradiation of human lymphocytes with HE-NE laser,” Laser Therapy, vol. 4, no. 1, pp. 5–24, 1992. View at Google Scholar · View at Scopus
  27. M. Gulsoy, G. H. Ozer, O. Bozkulak et al., “The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro,” Journal of Photochemistry and Photobiology B, vol. 82, no. 3, pp. 199–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Wollman, S. Rochkind, and R. Simantov, “Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells,” Neurological Research, vol. 18, no. 5, pp. 467–470, 1996. View at Google Scholar · View at Scopus
  29. J. T. Eells, M. M. Henry, P. Summerfelt et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3439–3444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Ehrlicher, T. Betz, B. Stuhrmann et al., “Guiding neuronal growth with light,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16024–16028, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. H. Shin, E. Lee, J. K. Hyun et al., “Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation,” Neuroscience Letters, vol. 344, no. 2, pp. 71–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Snyder, K. R. Byrnes, R. C. Borke, A. Sanchez, and J. J. Anders, “Quantitation of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment,” Lasers in Surgery and Medicine, vol. 31, no. 3, pp. 216–222, 2002. View at Publisher · View at Google Scholar · View at Scopus