Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 184367, 9 pages
http://dx.doi.org/10.1155/2013/184367
Research Article

Yueju Pill Rapidly Induces Antidepressant-Like Effects and Acutely Enhances BDNF Expression in Mouse Brain

1Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
2Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
3TCM Jingui Research Section, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
4School of Life Science, Nanjing Normal University, Nanjing 210023, China
5Medical School, Jinan University, Guangzhou 510632, China

Received 19 February 2013; Accepted 30 March 2013

Academic Editor: David Mischoulon

Copyright © 2013 Wenda Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Kessler, P. Berglund, O. Demler et al., “The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R),” Journal of the American Medical Association, vol. 289, no. 23, pp. 3095–3105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Trivedi, A. J. Rush, S. R. Wisniewski et al., “Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice,” American Journal of Psychiatry, vol. 163, no. 1, pp. 28–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Brunoni, C. T. Teng, C. Correa et al., “Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting,” Arquivos de Neuro-Psiquiatria, vol. 68, no. 3, pp. 433–451, 2010. View at Google Scholar · View at Scopus
  4. M. Fava, “Diagnosis and definition of treatment-resistant depression,” Biological Psychiatry, vol. 53, no. 8, pp. 649–659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Zarate Jr., J. B. Singh, P. J. Carlson et al., “A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression,” Archives of General Psychiatry, vol. 63, no. 8, pp. 856–864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Berman, A. Cappiello, A. Anand et al., “Antidepressant effects of ketamine in depressed patients,” Biological Psychiatry, vol. 47, no. 4, pp. 351–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Price, M. K. Nock, D. S. Charney, and S. J. Mathew, “Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression,” Biological Psychiatry, vol. 66, no. 5, pp. 522–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Li, B. Lee, R. J. Liu et al., “mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists,” Science, vol. 329, no. 5994, pp. 959–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Autry, M. Adachi, E. Nosyreva et al., “NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses,” Nature, vol. 475, no. 7354, pp. 91–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. J. Zhang, W. H. Kang, Q. Li, and Q. R. Tan, “The beneficial effects of the herbal medicine Free and Easy Wanderer Plus (FEWP) for mood disorders: double-blind, placebo-controlled studies,” Journal of Psychiatric Research, vol. 41, no. 10, pp. 828–836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. An, Y. Z. Zhang, N. J. Yu et al., “The total flavonoids extracted from Xiaobuxin-Tang up-regulate the decreased hippocampal neurogenesis and neurotrophic molecules expression in chronically stressed rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 6, pp. 1484–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hu, P. Liu, D. H. Guo, K. Rahman, D. X. Wang, and T. T. Xie, “Antidepressant effects of the extract YZ-50 from Polygala tenuifolia in chronic mild stress treated rats and its possible mechanisms,” Pharmaceutical Biology, vol. 48, no. 7, pp. 794–800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. H. Wei, X. M. Cheng, J. S. Shen, and Z. T. Wang, “Antidepressant effect of Yueju-Wan ethanol extract and its fractions in mice models of despair,” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 339–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. H. Wei, X. D. Xu, J. S. Shen, and Z. T. Wang, “Antidepressant effect of Yueju ethanol extract and its constituents in mice models of despair,” China Pharmacy, vol. 20, no. 3, pp. 166–168, 2009. View at Google Scholar
  15. S. Maeng, C. A. Zarate Jr., J. Du et al., “Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors,” Biological Psychiatry, vol. 63, no. 4, pp. 349–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mingmalairak, M. Tohda, Y. Murakami, and K. Matsumoto, “Possible involvement of signal transducers and activators of transcription 3 system on depression in the model mice brain,” Biological and Pharmaceutical Bulletin, vol. 33, no. 4, pp. 636–640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Steru, R. Chermat, B. Thierry et al., “The automated tail suspension test: a computerized device which differentiates psychotropic drugs,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 11, no. 6, pp. 659–671, 1987. View at Google Scholar · View at Scopus
  18. J. B. Overmier and M. E. Seligman, “Effects of inescapable shock upon subsequent escape and avoidance responding,” Journal of Comparative and Physiological Psychology, vol. 63, no. 1, pp. 28–33, 1967. View at Google Scholar
  19. J. F. Cryan, A. Markou, and I. Lucki, “Assessing antidepressant activity in rodents: recent developments and future needs,” Trends in Pharmacological Sciences, vol. 23, no. 5, pp. 238–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Cryan, C. Mombereau, and A. Vassout, “The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice,” Neuroscience and Biobehavioral Reviews, vol. 29, no. 4-5, pp. 571–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Bechtholt-Gompf, K. L. Smith, C. S. John et al., “CD-1 and Balb/cJ mice do not show enduring antidepressant-like effects of ketamine in tests of acute antidepressant efficacy,” Psychopharmacology, vol. 215, no. 4, pp. 689–695, 2011. View at Google Scholar
  22. J. S. Lindholm, H. Autio, L. Vesa et al., “The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY, 451646 are preserved in bdnf+/− heterozygous null mice,” Neuropharmacology, vol. 62, no. 1, pp. 391–397, 2012. View at Google Scholar
  23. G. Z. Réus, R. B. Stringari, K. F. Ribeiro et al., “Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain,” Behavioural Brain Research, vol. 221, no. 1, pp. 166–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Koike, M. Iijima, and S. Chaki, “Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression,” Behavioural Brain Research, vol. 224, no. 1, pp. 107–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Martinowich, H. Manji, and B. Lu, “New insights into BDNF function in depression and anxiety,” Nature Neuroscience, vol. 10, no. 9, pp. 1089–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Racagni and M. Popoli, “Cellular and molecular mechanisms in the long-term action of antidepressants,” Dialogues in Clinical Neuroscience, vol. 10, no. 4, pp. 385–400, 2008. View at Google Scholar · View at Scopus
  27. N. M. Tsankova, O. Berton, W. Renthal, A. Kumar, R. L. Neve, and E. J. Nestler, “Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action,” Nature Neuroscience, vol. 9, no. 4, pp. 519–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. C. Conti, J. F. Cryan, A. Dalvi, I. Lucki, and J. A. Blendy, “cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs,” Journal of Neuroscience, vol. 22, no. 8, pp. 3262–3268, 2002. View at Google Scholar · View at Scopus
  29. H. Hiking, K. Aota, D. Kuwano, and T. Takemoto, “Structure and absolute configuration of α-rotunol and β-rotunol, sesquiterpenoids of Cyperus rotundus,” Tetrahedron, vol. 27, no. 19, pp. 4831–4836, 1971. View at Google Scholar · View at Scopus
  30. C. Thebtaranonth, Y. Thebtaranonth, S. Wanauppathamkul, and Y. Yuthavong, “Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10,12-peroxycalamenene, a sesquiterpene endoperoxide,” Phytochemistry, vol. 40, no. 1, pp. 125–128, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Sonwa and W. A. König, “Chemical study of the essential oil of Cyperus rotundus,” Phytochemistry, vol. 58, no. 5, pp. 799–810, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Nakai, T. Kido, K. Hashimoto et al., “Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying,” Journal of Ethnopharmacology, vol. 84, no. 1, pp. 51–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Suto, S. Kakinuma, Y. Ito, K. Sagara, H. Iwasaki, and H. Itokawa, “Determination of atractylon in Atractylodes rhizome using supercritical fluid chromatography on-line coupled with supercritical fluid extraction by the direct induction method,” Journal of Chromatography A, vol. 810, no. 1-2, pp. 252–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Tsuneki, E. L. Ma, S. Kobayashi et al., “Antiangiogenic activity of β-eudesmol in vitro and in vivo,” European Journal of Pharmacology, vol. 512, no. 2-3, pp. 105–115, 2005. View at Publisher · View at Google Scholar · View at Scopus