Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 185259, 10 pages
http://dx.doi.org/10.1155/2013/185259
Research Article

Beta-Glucan-Rich Extract from Pleurotus sajor-caju (Fr.) Singer Prevents Obesity and Oxidative Stress in C57BL/6J Mice Fed on a High-Fat Diet

1Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 14 February 2013; Revised 10 April 2013; Accepted 14 April 2013

Academic Editor: Menaka C. Thounaojam

Copyright © 2013 G. Kanagasabapathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Yun, “Possible anti-obesity therapeutics from nature- a review,” Phytochemistry, vol. 71, no. 14-15, pp. 1625–1641, 2010. View at Publisher · View at Google Scholar
  3. H. Choi, H. Eo, K. Park et al., “A water soluble extract from Curcubita mocshata shows anti-obesity effects by controlling lipid metabolism in high fat diet-induced obesity mouse model,” Biochemical and Biophysical Research Communications, vol. 359, no. 3, pp. 419–425, 2007. View at Google Scholar
  4. D. Haslam, “Obesity and diabetes: the links and common approaches,” Primary Care Diabetes, vol. 4, no. 2, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Kennett and P. G. Clifton, “New approaches to the pharmacological treatment of obesity: can they break through the efficacy barrier?” Pharmacology Biochemistry and Behavior, vol. 97, no. 1, pp. 63–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Slovacek, V. Pavlik, and B. Slovackova, “The effect of sibutramine therapy on occurrence of depression symptoms among obese patients,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 8, pp. e43–e44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Zou and J. Shao, “Role of adipocytokines in obesity-associated insulin resistance,” Journal of Nutritional Biochemistry, vol. 19, no. 5, pp. 277–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ono, E. Hattori, Y. Fukaya, S. Imai, and Y. Ohizumi, “Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats,” Journal of Ethnopharmacology, vol. 106, no. 2, pp. 238–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. W. Huang, Y. Liu, S. Dushenkov, C. T. Ho, and M. T. Huang, “Anti-obesity effects of epigallocatechin-3-gallate, orange peel extract, black tea extract, caffeine and their combinations in a mouse model,” Journal of Functional Foods, vol. 1, no. 3, pp. 304–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Golay and J. Ybarra, “The link between obesity and type 2 diabetes,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 19, no. 4, pp. 649–663, 2005. View at Publisher · View at Google Scholar
  11. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Curzio, H. Esterbauer, and G. Poli, “Possible role of aldehydic lipid peroxidation products as chemoattractants,” International Journal of Tissue Reactions, vol. 9, no. 4, pp. 295–306, 1987. View at Google Scholar · View at Scopus
  13. V. Witko-Sarsat, M. Friedlander, T. N. Khoa et al., “Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure,” Journal of Immunology, vol. 161, no. 5, pp. 2524–2532, 1998. View at Google Scholar · View at Scopus
  14. S. P. Wasser, “Current findings, future trends, and unsolved problems in studies of medicinal mushrooms,” Applied Microbiology and Biotechnology, vol. 89, no. 5, pp. 1323–1332, 2001. View at Google Scholar
  15. I. Schneider, G. Kressel, A. Meyer, U. Krings, R. G. Berger, and A. Hahn, “Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans,” Journal of Functional Foods, vol. 3, no. 1, pp. 17–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kanagasabapathy, U. R. Kuppusamy, S. N. A. Malek, A. A. Mahmood, K. H. Chua, and V. Sabaratnam, “Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer prevent glucose intolerance, insulin resistance and inflammation in C57BL/6J mice fed a high-fat diet,” BMC Complementary and Alternative Medicine, vol. 12, p. 261, 2012. View at Publisher · View at Google Scholar
  17. D. Khoury, C. Cuda, B. L. Luhovyy, and G. H. Anderson, “Beta Glucan: health benefits in obesity and metabolic syndrome,” Journal of Nutrition and Metabolism, vol. 2012, Article ID 851362, 28 pages, 2012. View at Publisher · View at Google Scholar
  18. S. K. Roy, D. Maiti, S. Mondal, D. Das, and S. S. Islam, “Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan,” Carbohydrate Research, vol. 343, no. 6, pp. 1108–1113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Gokcel, Y. Gumurdulu, H. Karakose et al., “Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity,” Diabetes, Obesity and Metabolism, vol. 4, no. 1, pp. 49–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. U. R. Kuppusamy and N. P. Das, “Potentiation of β-adrenoceptor agonist-mediated lipolysis by quercetin and fisetin in isolated rat adipocytes,” Biochemical Pharmacology, vol. 47, no. 3, pp. 521–529, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods in Enzymology, vol. 186, pp. 407–421, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  23. U. R. Kuppusamy, M. Indran, and P. Rokiah, “Glycaemic control in relation to xanthine oxidase and antioxidant indices in Malaysian Type 2 diabetes patients,” Diabetic Medicine, vol. 22, no. 10, pp. 1343–1346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Chen and K. Raymond, “Beta-glucans in the treatment of diabetes and associated cardiovascular risks,” Vascular Health and Risk Management, vol. 4, no. 6, pp. 1265–1272, 2008. View at Google Scholar · View at Scopus
  26. T. N. Kasaoka, M. Takahashi, H. Kim, and O. Ezaki, “Up-regulation of liver uncoupling protein-2 mRNA by either fish oil feeding or fibrate administration in mice,” Biochemical and Biophysical Research Communications, vol. 257, no. 3, pp. 879–885, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Keefe and D. S. H. Bell, “Postprandial hyperglycemia/hyperlipidemia is a cardiovascular risk factor,” American Journal of Cardiology, vol. 100, no. 5, pp. 899–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. N. K. Kapur, D. Ashen, and R. S. Blumenthal, “High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease,” Vascular Health and Risk Management, vol. 4, no. 1, pp. 39–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. A. J. M. Kerckhoffs, G. Hornstra, and R. P. Mensink, “Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies,” American Journal of Clinical Nutrition, vol. 78, no. 2, pp. 221–227, 2003. View at Google Scholar · View at Scopus
  30. M. Fukushima, T. Ohashi, Y. Fujiwara, K. Sonoyama, and M. Nakano, “Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats,” Experimental Biology and Medicine, vol. 226, no. 8, pp. 758–765, 2001. View at Google Scholar · View at Scopus
  31. L. M. Nilsson, A. Abrahamsson, S. Sahlin et al., “Bile acids and lipoprotein metabolism: effects of cholestyramine and chenodeoxycholic acid on human hepatic mRNA expression,” Biochemical and Biophysical Research Communications, vol. 357, no. 3, pp. 707–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Nannipieri, C. Gonzales, S. Baldi et al., “Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study,” Diabetes Care, vol. 28, no. 7, pp. 1757–1762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Parekh and F. A. Anania, “Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease,” Gastroenterology, vol. 132, no. 6, pp. 2191–2207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Kircshbaum, “Total urine antioxidant capacity,” Clinica Chimica Acta, vol. 305, no. 1-2, pp. 167–173, 2001. View at Publisher · View at Google Scholar
  35. F. Galli, M. Piroddi, C. Annetti, C. Aisa, E. Floridi, and A. Floridi, “Oxidative stress and reactive oxygen species,” Contributions to Nephrology, vol. 149, pp. 240–260, 2005. View at Google Scholar · View at Scopus
  36. R. Agarwal and S. D. Chase, “Rapid flurometric-liquid chromatographic determination of malondialehyde in biological samples,” Journal of Chromatography B, vol. 775, no. 1, pp. 121–126, 2002. View at Publisher · View at Google Scholar
  37. M. Nagata, T. Takamura, H. Ando et al., “Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity,” Metabolism, vol. 57, no. 8, pp. 1071–1077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. L. Wu, C. C. Chiou, P. Y. Chang, and J. T. Wu, “Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics,” Clinica Chimica Acta, vol. 339, no. 1-2, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Yoshino, M. Tanaka, S. Nakano et al., “Effect of rosvastatin on concentration of plasma lipids, urine and plasma oxidative stress markers, and plasa high-sansitivity c-reactive proteins in hypercholesterolemic patients,” Current Therapeutic Research, vol. 6, no. 6, pp. 439–448, 2009. View at Google Scholar
  40. G. Kanagasabapathy, S. N. A. Malek, U. R. Kuppusamy, and S. Vikineswary, “Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of Pleurotus sajor-caju (Fr.) singer,” Journal of Agricultural and Food Chemistry, vol. 59, no. 6, pp. 2618–2626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Palacios, M. Lozano, C. Moro et al., “Antioxidant properties of phenolic compounds occurring in edible mushrooms,” Food Chemistry, vol. 128, no. 3, pp. 674–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. G. Wood, P. G. Gibson, and M. L. Garg, “A review of the methodology for assessing in vivo antioxidant capacity,” Journal of the Science of Food and Agriculture, vol. 86, no. 13, pp. 2057–2066, 2006. View at Publisher · View at Google Scholar
  43. V. M. Castrillejo, M. M. Romero, M. Esteve, A. Ardevol, M. Blay, C. Blade et al., “Antioxidant effect of grape seed procyanidin extract and oleoyl-estrone in obese Zucker rats,” Nutrition, vol. 27, no. 11-12, pp. 1172–1176, 2011. View at Publisher · View at Google Scholar
  44. C. K. Roberts and K. K. Sindhu, “Oxidative stress and metabolic syndrome,” Life Sciences, vol. 84, no. 21-22, pp. 705–712, 2009. View at Publisher · View at Google Scholar
  45. J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011. View at Publisher · View at Google Scholar
  46. S. E. Shoelson, L. Herrero, and A. Naaz, “Obesity, inflammation, and insulin resistance,” Gastroenterology, vol. 132, no. 6, pp. 2169–2180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. J. Harwood, “The adipocyte as an endocrine organ in the regulation of metabolic homeostasis,” Neuropharmacology, vol. 63, no. 1, pp. 57–75, 2012. View at Publisher · View at Google Scholar
  48. R. P. Brun, J. B. Kim, E. Hu, and B. M. Spiegelman, “Peroxisome proliferator-activated receptor gamma and the control of adipogenesis,” Current Opinion in Lipidology, vol. 8, no. 4, pp. 212–218, 1997. View at Publisher · View at Google Scholar
  49. Y. J. Kim and T. Park, “Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet,” Nutrition Research, vol. 28, no. 6, pp. 414–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Al-Hasani and H. G. Joost, “Nutrition-/diet-induced changes in gene expression in white adipose tissue,” Best Practice and Research, vol. 19, no. 4, pp. 589–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. B. A. Fielding and K. N. Frayn, “Lipoprotein lipase and the disposition of dietary fatty acids,” British Journal of Nutrition, vol. 80, no. 6, pp. 495–502, 1998. View at Google Scholar · View at Scopus
  52. H. Lee, R. Kang, and Y. Yoon, “SH21B, an anti-obesity herbal composition, inhibits fat accumulation in 3T3-L1 adipocytes and high fat diet-induced obese mice through the modulation of the adipogenesis pathway,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 709–717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. W. E. Jocken, E. E. Blaak, C. J. H. van der Kallen, M. A. van Baak, and W. H. M. Saris, “Blunted β-adrenoceptor-mediated fat oxidation in overweight subjects: a role for the hormone-sensitive lipase gene,” Metabolism, vol. 57, no. 3, pp. 326–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. W. E. Jocken and E. E. Blaak, “Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity,” Physiology and Behavior, vol. 94, no. 2, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at Scopus