Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 268468, 12 pages
http://dx.doi.org/10.1155/2013/268468
Research Article

β-Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells

Department of Traditional Chinese Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China

Received 24 January 2013; Revised 15 March 2013; Accepted 23 March 2013

Academic Editor: Yu-Jen Chen

Copyright © 2013 Bing Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Kerbel, “Tumor angiogenesis,” New England Journal of Medicine, vol. 358, no. 19, pp. 2039–2049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Li and A. L. Harris, “Notch signaling from tumor cells: a new mechanism of angiogenesis,” Cancer Cell, vol. 8, no. 1, pp. 1–3, 2005. View at Publisher · View at Google Scholar
  3. Y. Zhao, Q. Bao, A. Renner et al., “Cancer stem cells and angiogenesis,” International Journal of Developmental Biology, vol. 55, no. 4-5, pp. 477–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bao, Q. Wu, S. Sathornsumetee et al., “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor,” Cancer Research, vol. 66, no. 16, pp. 7843–7848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Ricci-Vitiani, R. Pallini, M. Biffoni et al., “Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells,” Nature, vol. 468, no. 7325, pp. 824–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Wang, K. Chadalavada, J. Wilshire et al., “Glioblastoma stem-like cells give rise to tumour endothelium,” Nature, vol. 468, no. 7325, pp. 829–835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Folkins, Y. Shaked, S. Man et al., “Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1,” Cancer Research, vol. 69, no. 18, pp. 7243–7251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Beck, G. Driessens, S. Goossens et al., “A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours,” Nature, vol. 478, no. 7369, pp. 399–403, 2011. View at Publisher · View at Google Scholar
  9. H. Sun, J. Jia, X. Wang et al., “CD44(+)/CD24 (-) breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties,” Clinical & Translational Oncology, vol. 15, no. 1, pp. 46–54, 2013. View at Google Scholar
  10. V. L. Bautch, “Tumour stem cells switch sides,” Nature, vol. 468, no. 7325, pp. 770–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Takaishi, T. Okumura, S. Tu et al., “Identification of gastric cancer stem cells using the cell surface marker CD44,” Stem Cells, vol. 27, no. 5, pp. 1006–1020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Yang, Y. F. Ping, X. Yu et al., “Gastric cancer stem-like cells possess higher capability of invasion and metastasis in association with a mesenchymal transition phenotype,” Cancer Letters, vol. 310, no. 1, pp. 46–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. J. Lee, Y. S. Choi, S. J. Kim, and H. J. Moon, “CD44 and CD133 as cancer stem cell markers for gastric cancer,” Journal of Gastric Cancer, vol. 10, no. 3, pp. 99–105, 2010. View at Publisher · View at Google Scholar
  14. Z. Xue, H. Yan, J. Li et al., “Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line,” Journal of Cellular Biochemistry, vol. 113, no. 1, pp. 302–312, 2012. View at Publisher · View at Google Scholar
  15. Y. Saikawa, K. Fukuda, T. Takahashi, R. Nakamura, H. Takeuchi, and Y. Kitagawa, “Gastric carcinogenesis and the cancer stem cell hypothesis,” Gastric Cancer, vol. 13, no. 1, pp. 11–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Visvader and G. J. Lindeman, “Cancer stem cells in solid tumours: accumulating evidence and unresolved questions,” Nature Reviews Cancer, vol. 8, no. 10, pp. 755–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. B. Alvero, R. Chen, H. H. Fu et al., “Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance,” Cell Cycle, vol. 8, no. 1, pp. 158–166, 2009. View at Google Scholar · View at Scopus
  18. N. Takebe, P. J. Harris, R. Q. Warren, and S. P. Ivy, “Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways,” Nature Reviews Clinical Oncology, vol. 8, no. 2, pp. 97–106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Garber, “Notch emerges as new cancer drug target,” Journal of the National Cancer Institute, vol. 99, no. 17, pp. 1284–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. T. Jun, J. Stevens, and P. Kaplan-Lefko, “Top NOTCH targets: Notch signaling in cancer,” Drug Development Research, vol. 69, no. 6, pp. 319–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Dufraine, Y. Funahashi, and J. Kitajewski, “Notch signaling regulates tumor angiogenesis by diverse mechanisms,” Oncogene, vol. 27, no. 38, pp. 5132–5137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. S. Yeh, C. N. Wu, K. W. Hsu et al., “The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2,” Cancer Research, vol. 69, no. 12, pp. 5039–5048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. W. Li, Q. Wu, Z. H. Peng, Z. R. Yang, and Y. Wang, “Expression and significance of Notch1 and PTEN in gastric cancer,” Ai Zheng, vol. 26, no. 11, pp. 1183–1187, 2007. View at Google Scholar · View at Scopus
  24. V. Bolós, M. Blanco, V. Medina, G. Aparicio, S. Díaz-Prado, and E. Grande, “Notch signalling in cancer stem cells,” Clinical and Translational Oncology, vol. 11, no. 1, pp. 11–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. H. Zhan, J. Liu, X. J. Qu et al., “β-Elemene induces apoptosis in human renal-cell carcinoma 786-0 cells through inhibition of MAPK/ERK and PI3K/Akt/mTOR signalling pathways,” Asian Pacific Journal of Cancer Prevention, vol. 312, no. 13, pp. 2739–2744, 2012. View at Google Scholar
  26. P. Zhao, Y. Li, and Y. Lu, “Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma,” BMC Cancer, vol. 10, p. 218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Shin, H. C. Jeung, J. B. Ahn et al., “Mobilized CD34+ cells as a biomarker candidate for the efficacy of combined maximal tolerance dose and continuous infusional chemotherapy and G-CSF surge in gastric cancer,” Cancer Letters, vol. 270, no. 2, pp. 269–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Gong, L. Wang, J. C. Yao et al., “Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer,” Clinical Cancer Research, vol. 11, no. 4, pp. 1386–1393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. G. Yu, J. Y. Li, Y. N. Yang et al., “Increased abundance of cyclooxygenase-2 correlates with vascular endothelial growth factor-A abundance and tumor angiogenesis in gastric cancer,” Cancer Letters, vol. 195, no. 1, pp. 43–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. E. Joo, J. S. Rew, Y. H. Seo et al., “Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer,” Journal of Clinical Gastroenterology, vol. 37, no. 1, pp. 28–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Vidal, A. Soriano-Izquierdo, M. Pera et al., “Positive VEGF immunostaining independently predicts poor prognosis in curatively resected gastric cancer patients: results of a study assessing a panel of angiogenic markers,” Journal of Gastrointestinal Surgery, vol. 12, no. 6, pp. 1005–1014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. E. Vermeulen, G. Gasparini, S. B. Fox et al., “Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation,” European Journal of Cancer Part A, vol. 32, no. 14, pp. 2474–2484, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  34. N. A. Lobo, Y. Shimono, D. Qian, and M. F. Clarke, “The biology of cancer stem cells,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 675–699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Wang, Y. Zhang, Y. Li, S. Banerjee, J. Liao, and F. H. Sarkar, “Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells,” Molecular Cancer Therapeutics, vol. 5, no. 3, pp. 483–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Wang, Y. Zhang, S. Banerjee, Y. Li, and F. H. Sarkar, “Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells,” Cancer, vol. 106, no. 11, pp. 2503–2513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. L. Deftos, E. Huang, E. W. Ojala, K. A. Forbush, and M. J. Bevan, “Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes,” Immunity, vol. 13, no. 1, pp. 73–84, 2000. View at Google Scholar · View at Scopus
  38. A. Fischer, N. Schumacher, M. Maier, M. Sendtner, and M. Gessler, “The Notch target genes Hey1 and Hey2 are required for embryonic vascular development,” Genes and Development, vol. 18, no. 8, pp. 901–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Hu, C. Lu, H. H. Dong et al., “Biological roles of the Delta family notch ligand Dll4 in tumor and endothelial cells in ovarian cancer,” Cancer Research, vol. 71, no. 18, pp. 6030–6039, 2011. View at Publisher · View at Google Scholar
  40. G. Thurston and J. Kitajewski, “VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis,” British Journal of Cancer, vol. 99, no. 8, pp. 1204–1209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Wang, Y. Li, and F. H. Sarkar, “Notch signaling proteins: legitimate targets for cancer therapy,” Current Protein and Peptide Science, vol. 11, no. 6, pp. 398–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kawahara, N. Kawaguchi-Ihara, Y. Okuhashi, M. Itoh, N. Nara, and S. Tohda, “Cyclopamine and quercetin suppress the growth of leukemia and lymphoma cells,” Anticancer Research, vol. 29, no. 11, pp. 4629–4632, 2009. View at Google Scholar · View at Scopus
  43. L. Lin, Y. Liu, H. Li et al., “Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030,” British Journal of Cancer, vol. 105, no. 2, pp. 212–220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Bao, S. Ali, D. Kong et al., “Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and pten in pancreatic cancer,” PLoS ONE, vol. 6, no. 3, Article ID e17850, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Zhen, S. Zhao, Q. Li, Y. Li, and K. Kawamoto, “Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas,” Cancer Letters, vol. 292, no. 1, pp. 64–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Sun and S. Zhang, “Arsenic trioxide regulates the apoptosis of glioma cell and glioma stem cell via down-regulation of stem cell marker Sox2,” Biochemical and Biophysical Research Communications, vol. 410, no. 3, pp. 692–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Shiras, S. Chettiar T, V. Shepal, G. Rajendran, G. Rajendra Prasad, and P. Shastry, “Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma,” Stem Cells, vol. 25, no. 6, pp. 1478–1489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Kondratyev, A. Kreso, R. M. Hallett et al., “Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer,” Oncogene, vol. 31, no. 1, pp. 93–103, 2011. View at Google Scholar
  49. A. Sharma, A. N. Paranjape, A. Rangarajan, and R. R. Dighe, “A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells,” Molecular Cancer Therapeutics, vol. 11, no. 1, pp. 77–86, 2012. View at Google Scholar
  50. R. C. A. Sainson and A. L. Harris, “Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis?” Trends in Molecular Medicine, vol. 13, no. 9, pp. 389–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Noguera-Troise, C. Daly, N. J. Papadopoulos et al., “Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis,” Nature, vol. 444, no. 7122, pp. 1032–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. L. Li, R. C. A. Sainson, W. Shi et al., “Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo,” Cancer Research, vol. 67, no. 23, pp. 11244–11253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Xu, S. Tao, X. Wang et al., “The synthesis and anti-proliferative effects of β-elemene derivatives with mTOR inhibition activity,” Bioorganic and Medicinal Chemistry, vol. 14, no. 15, pp. 5351–5356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Q. Yao, X. Ding, Y. C. Jia, C. X. Huang, Y. Z. Wang, and Y. H. Xu, “Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation,” Cancer Letters, vol. 264, no. 1, pp. 127–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Li, B. Xie, X. Li et al., “Down-regulation of survivin and hypoxia-inducible factor-1α by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenograft,” Cancer Biotherapy and Radiopharmaceuticals, vol. 27, no. 1, pp. 56–64, 2012. View at Publisher · View at Google Scholar
  56. G. Wang, X. Li, F. Huang et al., “Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death,” Cellular and Molecular Life Sciences, vol. 62, no. 7-8, pp. 881–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Li, G. Wang, J. Zhao et al., “Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase,” Cellular and Molecular Life Sciences, vol. 62, no. 7-8, pp. 894–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Yu, R. Wang, L. Xu, S. Xie, J. Dong, and Y. Jing, “β-Elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and Generation of ROS,” PLoS ONE, vol. 6, no. 1, Article ID e15843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. Yu, R. Wang, L. Xu, J. Dong, and Y. Jing, “N-(β-Elemene-13-yl)tryptophan methyl ester induces apoptosis in human leukemia cells and synergizes with arsenic trioxide through a hydrogen peroxide dependent pathway,” Cancer Letters, vol. 269, no. 1, pp. 165–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. E. Nör, J. Christensen, D. J. Mooney, and P. J. Polverini, “Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression,” American Journal of Pathology, vol. 154, no. 2, pp. 375–384, 1999. View at Google Scholar · View at Scopus
  61. A. Iervolino, D. Trisciuoglio, D. Ribatti et al., “Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity,” The FASEB Journal, vol. 16, no. 11, pp. 1453–1455, 2002. View at Google Scholar · View at Scopus
  62. I. S. Song, A. G. Wang, Y. Y. Sun et al., “Regulation of glucose metabolism-related genes and VEGF by HIF-1α and HIF-1β, but not HIF-2α, in gastric cancer,” Experimental and Molecular Medicine, vol. 41, no. 1, pp. 51–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Yoshino, M. Aoyagi, M. Tamaki, L. Duan, T. Morimoto, and K. Ohno, “Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells,” International Journal of Oncology, vol. 29, no. 4, pp. 981–987, 2006. View at Google Scholar · View at Scopus
  64. R. Qi, H. An, Y. Yu et al., “Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis,” Cancer Research, vol. 63, no. 23, pp. 8323–8329, 2003. View at Google Scholar · View at Scopus
  65. Y. Chen, D. Li, H. Liu et al., “Notch-1 signaling facilitates survivin expression in human non-small cell lung cancer cells,” Cancer Biology and Therapy, vol. 11, no. 1, pp. 14–21, 2011. View at Publisher · View at Google Scholar · View at Scopus