Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 321096, 9 pages
http://dx.doi.org/10.1155/2013/321096
Research Article

Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth

Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Achasan-ro 263, Seoul 143-701, Republic of Korea

Received 26 November 2012; Accepted 16 January 2013

Academic Editor: Senthamil R. Selvan

Copyright © 2013 Minjung Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Yach, D. Stuckler, and K. D. Brownell, “Epidemiologic and economic consequences of the global epidemics of obesity and diabetes,” Nature Medicine, vol. 12, no. 1, pp. 62–66, 2006. View at Google Scholar · View at Scopus
  2. A. H. Mokdad, B. A. Bowman, E. S. Ford, F. Vinicor, J. S. Marks, and J. P. Koplan, “The continuing epidemics of obesity and diabetes in the United States,” Journal of the American Medical Association, vol. 286, no. 10, pp. 1195–1200, 2001. View at Google Scholar · View at Scopus
  3. D. Naishadham and A. Jemal, “Cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Publisher · View at Google Scholar
  4. D. N. Syed, F. Afaq, N. Maddodi et al., “Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased mitf levels,” Journal of Investigative Dermatology, vol. 131, no. 6, pp. 1291–1299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Gatouillat, E. Balasse, D. Joseph-Pietras, H. Morjani, and C. Madoulet, “Resveratrol induces cell-cycle disruption and apoptosis in chemoresistant B16 melanoma,” Journal of Cellular Biochemistry, vol. 110, no. 4, pp. 893–902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. N. Syed and H. Mukhtar, “Botanicals for the prevention and treatment of cutaneous melanoma,” Pigment Cell and Melanoma Research, vol. 24, no. 4, pp. 688–702, 2011. View at Publisher · View at Google Scholar
  7. L. Y. Chen, M. T. Sheu, D. Z. Liu et al., “Pretreatment with an ethanolic extract of Taiwanofungus camphoratus (Antrodia camphorata) enhances the cytotoxic effects of amphotericin B,” Journal of Agricultural and Food Chemistry, vol. 59, no. 20, pp. 11255–11263, 2011. View at Google Scholar
  8. S. H. Tu, C. H. Wu, L. C. Chen et al., “In vivo antitumor effects of 4, 7-Dimethoxy-5-methyl-1, 3-benzodioxole isolated from the fruiting body of Antrodia camphorata through activation of the p53-Mediated p27/Kip1 signaling pathway,” Journal of Agricultural and Food Chemistry, vol. 60, no. 14, pp. 3612–3618, 2012. View at Google Scholar
  9. W.-L. Lin, Y.-J. Lee, P.-Y. Huang, and T.-H. Tseng, “Inhibition of cell survival, cell cycle progression, tumor growth and cyclooxygenase-2 activity in MDA-MB-231 breast cancer cells by camphorataimide B,” European Journal of Pharmacology, vol. 680, no. 1–3, pp. 8–15, 2012. View at Publisher · View at Google Scholar
  10. Y. K. Rao, J. Whang-Peng, C.-Y. F. Huang, S.-K. Shyue, S.-L. Hsu, and Y.-M. Tzeng, “Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway,” Journal of Agricultural and Food Chemistry, vol. 59, no. 20, pp. 10943–10954, 2011. View at Publisher · View at Google Scholar
  11. F.-S. Liu, P.-Y. Yang, D.-N. Hu, Y.-W. Huang, and M.-J. Chen, “Antrodia camphorata induces apoptosis and enhances the cytotoxic effect of paclitaxel in human ovarian cancer cells,” International Journal of Gynecological Cancer, vol. 21, no. 7, pp. 1172–1179, 2011. View at Publisher · View at Google Scholar
  12. E. S. Han, J. Y. Oh, and H. J. Park, “Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 703–710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Haupt, M. Berger, Z. Goldberg, and Y. Haupt, “Apoptosis: the p53 network,” Journal of Cell Science, vol. 116, no. 20, pp. 4077–4085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Levine, “p53, the cellular gatekeeper for growth and division,” Cell, vol. 88, no. 3, pp. 323–331, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Puri, M. S. Eller, H. R. Byers, S. Dykstra, J. Kubera, and B. A. Gilchrest, “Telomere-based DNA damage responses: a new approach to melanoma,” FASEB Journal, vol. 18, no. 12, pp. 1373–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. E. Bell and C. Levy, “The three M's: melanoma, microphthalmia-associated transcription factor and microRNA,” Pigment Cell Melanoma Resesearch, vol. 24, no. 6, pp. 1088–1106, 2011. View at Google Scholar
  17. Z. Abdel-Malek, V. B. Swope, I. Suzuki et al., “Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1789–1793, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Serafino, P. Sinibaldi-Vallebona, G. Lazzarino et al., “Differentiation of human melanoma cells induced by cyanidin-3-O-β- glucopyranoside,” FASEB Journal, vol. 18, no. 15, pp. 1940–1942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Gismondi, A. Lentini, C. Tabolacci, B. Provenzano, and S. Beninati, “Transglutaminase-dependent antiproliferative and differentiative properties of nimesulide on B16-F10 mouse melanoma cells,” Amino Acids, vol. 38, no. 1, pp. 257–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. C. Hseu, H. L. Yang, Y. C. Lai, J. G. Lin, G. W. Chen, and Y. H. Chang, “Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells,” Nutrition and Cancer, vol. 48, no. 2, pp. 189–197, 2004. View at Google Scholar · View at Scopus
  21. H. M. Lien, H. W. Lin, Y. J. Wang et al., “Inhibition of anchorage-independent proliferation and G0/G1 cell-cycle regulation in human colorectal carcinoma cells by 4, 7-Dimethoxy-5-Methyl-l, 3-Benzodioxole isolated from the fruiting body of Antrodia camphorate,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 984027, 10 pages, 2011. View at Publisher · View at Google Scholar
  22. C. J. Sherr, “Principles of tumor suppression,” Cell, vol. 116, no. 2, pp. 235–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. F. Robbins, R. A. Morgan, S. A. Feldman et al., “Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Vogt Sionov and Y. Haupt, “The cellular response to p53: the decision between life and death,” Oncogene, vol. 18, no. 45, pp. 6145–6157, 1999. View at Google Scholar · View at Scopus
  25. O. Tokgun, H. Akca, R. Mammadov, C. Aykurt, and G. Deniz, “Convolvulus galaticus, Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells,” Journal of Medicinal Food, vol. 15, no. 11, pp. 1000–1005, 2012. View at Publisher · View at Google Scholar
  26. S. Carreira, J. Goodall, I. Aksan et al., “Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression,” Nature, vol. 433, no. 7027, pp. 764–769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. B. Zhou, J. J. Chen, W. X. Wang, J. T. Cai, and Q. Du, “Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice,” World Journal of Gastroenterology, vol. 11, no. 2, pp. 280–284, 2005. View at Google Scholar · View at Scopus
  28. S. Merighi, P. Mirandola, K. Varani et al., “A glance at adenosine receptors: novel target for antitumor therapy,” Pharmacology and Therapeutics, vol. 100, no. 1, pp. 31–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Nakamura, N. Yoshikawa, Y. Yamaguchi, S. Kagota, K. Shinozuka, and M. Kunitomo, “Antitumor effect of cordycepin (3′-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation,” Anticancer Research, vol. 26, no. 1 A, pp. 43–47, 2006. View at Google Scholar · View at Scopus
  30. L. Madi, B. Rosenberg-Haggen, A. Nyska, and R. Korenstein, “Enhancing pigmentation via activation of A3 adenosine receptors in B16 melanoma cells and in human skin explants,” Experimental Dermatology, vol. 22, no. 1, pp. 74–77, 2013. View at Publisher · View at Google Scholar