Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 379536, 13 pages
http://dx.doi.org/10.1155/2013/379536
Research Article

Shikonin Suppresses Human T Lymphocyte Activation through Inhibition of IKKβ Activity and JNK Phosphorylation

State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau

Received 5 February 2013; Accepted 30 March 2013

Academic Editor: Il-Moo Chang

Copyright © 2013 Ting Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Chen, L. Yang, J. J. Oppenheim, and O. M. Zack Howard, “Cellular pharmacology studies of shikonin derivatives,” Phytotherapy Research, vol. 16, no. 3, pp. 199–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. C. Lee, C. N. Wang, Y. T. Lai et al., “Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma,” British Journal of Pharmacology, vol. 161, no. 7, pp. 1496–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Wu, L. Wu, L. Li, S. I. Tashiro, S. Onodera, and T. Ikejima, “p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells,” Journal of Pharmacological Sciences, vol. 94, no. 2, pp. 166–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Wang, S. L. Raung, L. C. Chang, and S. C. Kuo, “Inhibition of hind-paw edema and cutaneous vascular plasma extravasation in mice by acetylshikonin,” European Journal of Pharmacology, vol. 272, no. 1, pp. 87–95, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Mao, C. Rong Yu, W. Hua Li, and W. Xin Li, “Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells,” Cell Research, vol. 18, no. 8, pp. 879–888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. W. Cheng, C. Y. Chang, K. L. Lin, C. M. Hu, C. H. Lin, and J. J. Kang, “Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-κB signaling,” Journal of Ethnopharmacology, vol. 120, no. 2, pp. 264–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Andújar, M. C. Recio, T. Bacelli, R. M. Giner, and J. L. Ríos, “Shikonin reduces oedema induced by phorbol ester by interfering with IκBα degradation thus inhibiting translocation of NF-κB to the nucleus,” British Journal of Pharmacology, vol. 160, no. 2, pp. 376–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Chiu, S. W. Tsao, P. I. Hwang, S. Vanisree, Y. A. Chen, and N. S. Yang, “Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling,” BMC Genomics, vol. 11, no. 1, article 513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Dale, M. Davis, and D. L. Faustman, “A role for transcription factor NF-κB in autoimmunity: possible interactions of genes, sex, and the immune response,” American Journal of Physiology, vol. 30, no. 4, pp. 152–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Hayden, A. P. West, and S. Ghosh, “NF-κB and the immune response,” Oncogene, vol. 25, no. 51, pp. 6758–6780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Yamamoto and R. B. Gaynor, “Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 135–142, 2001. View at Google Scholar · View at Scopus
  12. A. C. Bharti and B. B. Aggarwal, “Nuclear factor-kappa B and cancer: its role in prevention and therapy,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 883–888, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Karin, Y. Yamamoto, and Q. M. Wang, “The IKK NF-κB system: a treasure trove for drug development,” Nature Reviews Drug Discovery, vol. 3, no. 1, pp. 17–26, 2004. View at Google Scholar · View at Scopus
  14. J. M. Kyriakis and J. Avruch, “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,” Physiological Reviews, vol. 81, no. 2, pp. 807–869, 2001. View at Google Scholar · View at Scopus
  15. R. Ghittoni, L. Patrussi, K. Pirozzi et al., “Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases,” FASEB Journal, vol. 19, no. 6, pp. 605–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Gerlier and N. Thomasset, “Use of MTT colorimetric assay to measure cell activation,” Journal of Immunological Methods, vol. 94, no. 1-2, pp. 57–63, 1986. View at Google Scholar · View at Scopus
  17. C. Y. Leung, L. Liu, R. N. S. Wong, Y. Y. Zeng, M. Li, and H. Zhou, “Saikosaponin-d inhibits T cell activation through the modulation of PKCθ, JNK, and NF-κB transcription factor,” Biochemical and Biophysical Research Communications, vol. 338, no. 4, pp. 1920–1927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Sancho, A. Macho, L. De La Vega et al., “Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-κB, NFAT, and activator protein 1 signaling pathways,” Journal of Immunology, vol. 172, no. 4, pp. 2341–2351, 2004. View at Google Scholar · View at Scopus
  19. L. P. Kane, J. Lin, and A. Weiss, “It's all Rel-ative: NF-κB and CD28 costimulation of T-cell activation,” Trends in Immunology, vol. 23, no. 8, pp. 413–420, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yoshizawa, D. Hammaker, S. E. Sweeney, D. L. Boyle, and G. S. Firestein, “Synoviocyte innate immune responses—I. Differential regulation of interferon responses and the JNK pathway by MAPK kinases,” Journal of Immunology, vol. 181, no. 5, pp. 3252–3258, 2008. View at Google Scholar · View at Scopus
  21. C. Dong, R. J. Davis, and R. A. Flavell, “MAP kinases in the immune response,” Annual Review of Immunology, vol. 20, pp. 55–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. C. Chiu and N. S. Yang, “Inhibition of tumor necrosis factor-α through selective blockade of Pre-mRNA splicing by shikonin,” Molecular Pharmacology, vol. 71, no. 6, pp. 1640–1645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Andújar, J. L. Ríos, R. M. Giner, J. Miguel Cerdá, and M. del Carmen Recio, “Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in BALB/c mice,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 271606, 15 pages, 2012. View at Publisher · View at Google Scholar
  24. L. Lu, A. Qin, H. Huang et al., “Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition,” European Journal of Pharmacology, vol. 658, no. 2-3, pp. 242–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Alegre, K. A. Frauwirth, and C. B. Thompson, “T-cell regulation by CD28 and CTLA-4,” Nature Reviews Immunology, vol. 1, no. 3, pp. 220–228, 2001. View at Google Scholar · View at Scopus
  26. B. B. Hashemi, J. E. Penkala, C. Vens, H. Huls, M. Cubbage, and C. F. Sams, “T cell activation responses are differentially regulated during clinorotation and in spaceflight,” FASEB Journal, vol. 13, no. 14, pp. 2071–2082, 1999. View at Google Scholar · View at Scopus
  27. N. Isakov and A. Altman, “PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors,” Frontiers in Immunology, vol. 3, article 273, 2012. View at Google Scholar
  28. S. P. Umland, H. Shah, J. P. Jakway et al., “Effects of cyclosporin A and dinactin on T-cell proliferation, interleukin-5 production, and murine pulmonary inflammation,” American Journal of Respiratory Cell and Molecular Biology, vol. 20, no. 3, pp. 481–492, 1999. View at Google Scholar · View at Scopus
  29. T. Li, V. K. W. Wong, Q. Y. Xiao, F. W. Yuen, H. Zhou, and L. Liu, “Pseudolaric acid B suppresses T lymphocyte activation through inhibition of NF-κB signaling pathway and p38 phosphorylation,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 87–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. C. Chen, W. J. Tsai, M. H. Wu, L. C. Lin, and Y. C. Kuo, “Suberosin inhibits proliferation of human peripheral blood mononuclear cells through the modulation of the transcription factors NF-AT and NF-κB,” British Journal of Pharmacology, vol. 150, no. 3, pp. 298–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wang, J. Hao, D. L. Metzger et al., “B7-H4 treatment of T cells inhibits ERK, JNK, p38, and AKT activation,” PLoS ONE, vol. 7, Article ID e28232, 2012. View at Google Scholar
  32. Y. C. Kuo, S. C. Weng, C. J. Chou, T. T. Chang, and W. J. Tsai, “Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae,” British Journal of Pharmacology, vol. 140, no. 5, pp. 895–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. H. O. Pae, G. S. Oh, B. M. Choi et al., “Carbon Monoxide Produced by Heme Oxygenase-1 Suppresses T Cell Proliferation via Inhibition of IL-2 Production,” Journal of Immunology, vol. 172, no. 8, pp. 4744–4751, 2004. View at Google Scholar · View at Scopus
  34. M. F. Krummel and J. P. Allison, “CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells,” Journal of Experimental Medicine, vol. 183, no. 6, pp. 2533–2540, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Samarasinghe, C. Mancao, M. Pule et al., “Functional characterization of alloreactive T cells identifies CD25 and CD71 as optimal targets for a clinically applicable allodepletion strategy,” Blood, vol. 115, no. 2, pp. 396–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. K. H. Chao, M. Y. Wu, J. H. Yang, S. U. Chen, Y. S. Yang, and H. N. Ho, “Expression of the interleukin-2 receptor α (CD25) is selectively decreased on decidual CD4+ and CD8+ T lymphocytes in normal pregnancies,” Molecular Human Reproduction, vol. 8, no. 7, pp. 667–673, 2002. View at Google Scholar · View at Scopus
  37. H. P. Kim, J. Imbert, and W. J. Leonard, “Both integrated and differential regulation of components of the IL-2/IL-2 receptor system,” Cytokine and Growth Factor Reviews, vol. 17, no. 5, pp. 349–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. X. Lin and W. J. Leonard, “Signaling from the IL-2 receptor to the nucleus,” Cytokine and Growth Factor Reviews, vol. 8, no. 4, pp. 313–332, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. J. F. Camargo, M. P. Quinones, S. Mummidi et al., “CCR5 expression levels influence NFAT translocation, IL-2 production, and subsequent signaling events during T lymphocyte activation,” Journal of Immunology, vol. 182, no. 1, pp. 171–182, 2009. View at Google Scholar · View at Scopus
  40. A. Caruso, S. Licenziati, M. Corulli et al., “Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation,” Cytometry, vol. 27, pp. 71–76, 1997. View at Google Scholar
  41. P. P. Tak and G. S. Firestein, “NF-κB: a key role in inflammatory diseases,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 7–11, 2001. View at Google Scholar · View at Scopus
  42. T. Koike, H. Yamagishi, Y. Hatanaka et al., “A novel ERK-dependent signaling process that regulates interleukin-2 expression in a late phase of T cell activation,” Journal of Biological Chemistry, vol. 278, no. 18, pp. 15685–15692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Zhang, K. V. Salojin, J. X. Gao, M. J. Cameron, I. Bergerot, and T. L. Delovitch, “p38 Mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells,” Journal of Immunology, vol. 162, no. 7, pp. 3819–3829, 1999. View at Google Scholar · View at Scopus
  44. M. Li-Weber, M. K. Treiber, M. Giaisi et al., “Ultraviolet irradiation suppresses T cell activation via blocking TCR-mediated ERK and NF-κB signaling pathways,” Journal of Immunology, vol. 175, no. 4, pp. 2132–2143, 2005. View at Google Scholar · View at Scopus
  45. V. K. W. Wong, H. Zhou, S. S. F. Cheung, T. Li, and L. Liu, “Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation,” Journal of Cellular Biochemistry, vol. 107, no. 2, pp. 303–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Dong, D. D. Yang, C. Tournler et al., “JNK is required for effector T-cell function but not for T-cell activation,” Nature, vol. 405, no. 6782, pp. 91–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Manning and R. J. Davis, “Targeting JNK for therapeutic benefit: from junk to gold?” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 554–565, 2003. View at Publisher · View at Google Scholar · View at Scopus