Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 413092, 10 pages
http://dx.doi.org/10.1155/2013/413092
Research Article

Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons

1Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
2School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
3Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shanxi 710032, China
4Intensive Care Unit, Guang Zhou Municipal Hospital of Chinese Medicine, Guangzhou, Guangdong 510130, China
5Department of Traditional Chinese Medicine, Guang Zhou Brain Hospital, Guangzhou, Guangdong 510170, China
6Institute of Neuroscience, Fourth Military Medical University, Xi’an, Shanxi 710032, China

Received 16 November 2012; Accepted 1 January 2013

Academic Editor: Ke Liu

Copyright © 2013 Wei Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ono, A. Yoshida, Y. Ito, and T. Nohara, “Phenethyl alcohol glycosides and isopentenol glycoside from fruit of Bupleurum falcatum,” Phytochemistry, vol. 51, no. 6, pp. 819–823, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. P. B. Bermejo Benito, M. J. Abad Martínez, A. M. Silván Sen et al., “In vivo and in vitro antiinflammatory activity of Saikosaponins,” Life Sciences, vol. 63, no. 13, pp. 1147–1156, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. S. Huang, W. Xie, and B. T. Chen, “Effect of saikosaponins on epileptic rat electroenciphalogram,” Di Yi Jun Yi Da Xue Xue Bao, vol. 24, no. 12, pp. 1379–1381, 2004. View at Google Scholar · View at Scopus
  4. W. Xie, Y. Bao, L. J. Yu, G. N. Hou, and H. X. Tan, “Effect of saikosaponins on epileptic seizure and EEG in pentetrazole-induced chronic kindling rats,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 26, no. 2, pp. 177–180, 2006. View at Google Scholar · View at Scopus
  5. W. Xie, C. X. Meng, G. J. Shi, S. Q. Fan, Y. Hong, and W. J. Chen, “Effect of saikosaponin-a on epileptic seizures in refractory epilepsy rats,” Journal of Tropical Medicine, no. 5, pp. 382–385, 2012. View at Google Scholar
  6. Y.-H. Yu, W. Xie, Y. Bao, H.-M. Li, S.-J. Hu, and J.-L. Xing, “Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current,” PLoS ONE, vol. 7, no. 11, Article ID 50694, 2012. View at Publisher · View at Google Scholar
  7. D. A. Hoffman, J. C. Magee, C. M. Colbert, and D. Johnston, “K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons,” Nature, vol. 387, no. 6636, pp. 869–875, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Storm, “Potassium currents in hippocampal pyramidal cells,” Progress in Brain Research, vol. 83, pp. 161–187, 1990. View at Google Scholar · View at Scopus
  9. O. Pongs, T. Leicher, M. Berger et al., “Functional and molecular aspects of voltage-gated K+ channel β subunits,” Annals of the New York Academy of Sciences, vol. 868, pp. 344–355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Newitt, K. M. Houamed, H. Rehm, and B. L. Tempel, “Potassium channels and epilepsy: evidence that the epileptogenic toxin, dendrotoxin, binds to potassium channel proteins,” Epilepsy research Supplement, vol. 4, pp. 263–273, 1991. View at Google Scholar · View at Scopus
  11. I. Timofeev, F. Grenier, and M. Steriade, “Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures,” Journal of Neurophysiology, vol. 92, no. 2, pp. 1133–1143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. Rutecki, F. J. Lebeda, and D. Johnston, “4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition,” Journal of Neurophysiology, vol. 57, no. 6, pp. 1911–1924, 1987. View at Google Scholar · View at Scopus
  13. J. C. Velluti, A. Caputi, and O. Macadar, “Limbic epilepsy induced in the rat by dendrotoxin, a polypeptide isolated from the green mamba (Dendroaspis angusticeps) venom,” Toxicon, vol. 25, no. 6, pp. 649–657, 1987. View at Google Scholar · View at Scopus
  14. K. N. Juhng, T. G. Kokate, S. Yamaguchi et al., “Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-Kα and pandinustoxin-Kα,” Epilepsy Research, vol. 34, no. 2-3, pp. 177–186, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. L. Smart, V. Lopantsev, C. L. Zhang et al., “Deletion of the K(v)1.1 Potassium channel causes epilepsy in mice,” Neuron, vol. 20, no. 4, pp. 809–819, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. L. F. Barnwell, J. N. Lugo, W. L. Lee et al., “Kv4.2 knockout mice demonstrate increased susceptibility to convulsant stimulation,” Epilepsia, vol. 50, no. 7, pp. 1741–1751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Castro, E. C. Cooper, D. H. Lowenstein, and S. C. Baraban, “Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy,” Journal of Neuroscience, vol. 21, no. 17, pp. 6626–6634, 2001. View at Google Scholar · View at Scopus
  18. E. Aronica, K. Boer, K. J. Doorn et al., “Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions,” Neurobiology of Disease, vol. 36, no. 1, pp. 81–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Ohno and M. Higashima, “Effects of antiepileptic drugs on afterdischarge generation in rat hippocampal slices,” Brain Research, vol. 924, no. 1, pp. 39–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Yamaguchi and M. A. Rogawski, “Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice,” Epilepsy Research, vol. 11, no. 1, pp. 9–16, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. E. C. Cooper, “Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs,” Epilepsia, vol. 42, supplement 5, pp. 49–54, 2001. View at Google Scholar · View at Scopus
  22. B. S. Meldrum and M. A. Rogawski, “Molecular targets for antiepileptic drug development,” Neurotherapeutics, vol. 4, no. 1, pp. 18–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Bekkers, “Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat,” Journal of Physiology, vol. 525, part 3, pp. 611–620, 2000. View at Google Scholar · View at Scopus
  24. Z. W. Liu, T. Lei, T. Zhang, and Z. Yang, “Peroxynitrite donor impairs excitability of hippocampal CA1 neurons by inhibiting voltage-gated potassium currents,” Toxicology Letters, vol. 175, no. 1–3, pp. 8–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Maccaferri and C. J. McBain, “Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region,” Neuron, vol. 15, no. 1, pp. 137–145, 1995. View at Google Scholar · View at Scopus
  26. M. Borde, J. R. Cazalets, and W. Buno, “Activity-dependent response depression in rat hippocampal CA1 pyramidal neurons in vitro,” Journal of Neurophysiology, vol. 74, no. 4, pp. 1714–1729, 1995. View at Google Scholar · View at Scopus
  27. D. S. Shin, W. Yu, A. Sutton, M. Calos, E. Puil, and P. L. Carlen, “Isovaline, a rare amino acid, has anticonvulsant properties in two in vitro hippocampal seizure models by increasing interneuronal activity,” Epilepsia, vol. 52, no. 11, pp. 2084–2093, 2011. View at Publisher · View at Google Scholar
  28. J. J. Duan, Q. Wang, C. Y. Deng, S. J. Kuang, R. Z. Chen, and L. Tao, “Effects of carvedilol on delayed rectifier and transient inactivating potassium currents in rat hippocampal CA1 neurons,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 10, pp. 996–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Riazanski, A. Becker, J. Chen et al., “Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells,” Journal of Physiology, vol. 537, part 2, pp. 391–406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. A. E. Watts and J. G. R. Jefferys, “Effects of carbamazepine and baclofen on 4-aminopyridine-induced epileptic activity in rat hippocampal slices,” British Journal of Pharmacology, vol. 108, no. 3, pp. 819–823, 1993. View at Google Scholar · View at Scopus
  31. P. P. Quilichini, D. Diabira, C. Chiron, M. Milh, Y. Ben-Ari, and H. Gozlan, “Effects of antiepileptic drugs on refractory seizures in the intact immature corticohippocampal formation in vitro,” Epilepsia, vol. 44, no. 11, pp. 1365–1374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Brückner and U. Heinemann, “Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex-hippocampal slices,” Brain Research, vol. 859, no. 1, pp. 15–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. S. G. Birnbaum, A. W. Varga, L. L. Yuan, A. E. Anderson, J. D. Sweatt, and L. A. Schrader, “Structure and function of Kv4-family transient potassium channels,” Physiological Reviews, vol. 84, no. 3, pp. 803–833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Menegola, H. Misonou, H. Vacher, and J. S. Trimmer, “Dendritic A-type potassium channel subunit expression in CA1 hippocampal interneurons,” Neuroscience, vol. 154, no. 3, pp. 953–964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Falk, R. K. Kilani, L. A. Strazdas et al., “Developmental regulation of the A-type potassium-channel current in hippocampal neurons: role of the Kvβ1.1 subunit,” Neuroscience, vol. 120, no. 2, pp. 387–404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Rüschenschmidt, R. Köhling, M. Schwarz et al., “Characterization of a fast transient outward current in neocortical neurons from epilepsy patients,” Journal of Neuroscience Research, vol. 75, no. 6, pp. 807–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Fransén and J. Tigerholm, “Role of A-type potassium currents in excitability, network synchronicity, and epilepsy,” Hippocampus, vol. 20, no. 7, pp. 877–887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. O. O. Luk'ianets' and V. A. Iavors'kyi, “The action of pilocarpine on the accommodation properties of isolated phasic neurons of the rat hippocampus,” Fiziolohichnyi zhurnal, vol. 45, no. 4, pp. 35–40, 1999. View at Google Scholar · View at Scopus
  39. M. M. Monaghan, M. Menegola, H. Vacher, K. J. Rhodes, and J. S. Trimmer, “Altered expression and localization of hippocampal A-type potassium channel subunits in the pilocarpine-induced model of temporal lobe epilepsy,” Neuroscience, vol. 156, no. 3, pp. 550–562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Bernard, A. Anderson, A. Becker, N. P. Poolos, H. Deck, and D. Johnston, “Acquired dendritic channelopathy in temporal lobe epilepsy,” Science, vol. 305, no. 5683, pp. 532–535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. N. N. Urban and G. Barrionuevo, “Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11450–11455, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. G. M. Ramakers and J. F. Stormt, “A postsynaptic transient K+ current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 10144–10149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Zona, V. Tancredi, P. Longone et al., “Neocortical potassium currents are enhanced by the antiepileptic drug lamotrigine,” Epilepsia, vol. 43, no. 7, pp. 685–690, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Grunze, R. W. Greene, H. J. Möller, T. Meyer, and J. Walden, “Lamotrigine may limit pathological excitation in the hippocampus by modulating a transient potassium outward current,” Brain Research, vol. 791, no. 1-2, pp. 330–334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Walder, U. Altrup, H. Reith, and E. J. Speckmann, “Effects of valproate on early and late potassium currents of single neurons,” European Neuropsychopharmacology, vol. 3, no. 2, pp. 137–141, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Zona, V. Tancredi, E. Palma, G. C. Pirrone, and M. Avoli, “Potassium currents in rat cortical neurons in culture are enhanced by the antiepileptic drug carbamazepine,” Canadian Journal of Physiology and Pharmacology, vol. 68, no. 4, pp. 545–547, 1990. View at Google Scholar · View at Scopus
  47. A. Korngreen and B. Sakmann, “Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients,” Journal of Physiology, vol. 525, part 3, pp. 621–639, 2000. View at Google Scholar · View at Scopus