Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 480597, 9 pages
http://dx.doi.org/10.1155/2013/480597
Research Article

QiShenYiQi Pills, a Compound Chinese Medicine, Ameliorates Doxorubicin-Induced Myocardial Structure Damage and Cardiac Dysfunction in Rats

1Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integrated Traditional Chinese and Western Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China
2Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
3Department of Oncology, The First Affiliated Hospital of Guiyang College of TCM, Guiyang, Guizhou 550002, China
4Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China

Received 1 November 2012; Accepted 22 December 2012

Academic Editor: Kashmira Nanji

Copyright © 2013 Dong-Xin Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. He, D. Gu, X. Wu et al., “Major causes of death among men and women in China,” The New England Journal of Medicine, vol. 353, no. 11, pp. 1124–1134, 2005. View at Google Scholar
  2. D. P. Carbone, J. S. Salmon, D. Billheimer et al., “VeriStrat classifier for survival and time to progression in non-small cell lung cancer (NSCLC) patients treated with erlotinib and bevacizumab,” Lung Cancer, vol. 69, no. 3, pp. 337–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Goormaghtigh, P. Chatelain, J. Caspers, and J. M. Ruysschaert, “Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity,” Biochemical Pharmacology, vol. 29, no. 21, pp. 3003–3010, 1980. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Kumar, R. Marfatia, S. Tannenbaum et al., “Doxorubicin-induced cardiomyopathy 17 years after chemotherapy,” Texas Heart Institute Journal, vol. 39, no. 3, pp. 424–427, 2012. View at Google Scholar
  5. H. Nohl, “Identification of the site of adriamycin-activation in the heart cell,” Biochemical Pharmacology, vol. 37, no. 13, pp. 2633–2637, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Kaiserova, G. J. den Hartog, T. Simunek et al., “Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin,” Journal of Pharmacology, vol. 149, no. 7, pp. 920–930, 2006. View at Google Scholar
  7. D. H. Kim, A. B. Landry III, Y. S. Lee, and A. M. Katz, “Doxorubicin-induced calcium release from cardiac sarcoplasmic reticulum vesicles,” Journal of Molecular and Cellular Cardiology, vol. 21, no. 5, pp. 433–436, 1989. View at Google Scholar
  8. P. S. Green and C. Leeuwenburgh, “Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis,” Biochimica et Biophysica Acta, vol. 1588, no. 1, pp. 94–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Shi, L. Zhang, Y. W. Zhang et al., “Downregulation of doxorubicin-induced myocardial apoptosis accompanies postnatal heart maturation,” American Journal of Physiology, vol. 302, no. 8, pp. 1603–1613, 2012. View at Google Scholar
  10. A. V. Pointon, T. M. Walker, K. M. Phillips et al., “Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation,” PloS One, vol. 5, no. 9, Article ID e12733, 2010. View at Google Scholar · View at Scopus
  11. Y. Zhou, X. Kong, P. Zhao et al., “Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury,” Kidney International, vol. 79, no. 12, pp. 1302–1311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Huss and D. P. Kelly, “Nuclear receptor signaling and cardiac energetics,” Circulation Research, vol. 95, no. 6, pp. 568–578, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Gaballo, F. Zanotti, and S. Papa, “Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase,” Protein & Peptide Science, vol. 3, no. 4, pp. 451–460, 2002. View at Google Scholar
  14. Y. C. Li, Y. Y. Liu, B. H. Hu et al., “Attenuating effect of post-treatment with QiShen YiQi Pills on myocardial fibrosis in rat cardiac hypertrophy,” Hemorheol Microcirc, vol. 51, no. 3, pp. 177–191, 2012. View at Google Scholar
  15. L. Zhang, Y. Wang, L. Yu et al., “QI-SHEN-YI-QI accelerates angiogenesis after myocardial infarction in rats,” American Journal of Cardiology, vol. 143, no. 1, pp. 105–109, 2010. View at Google Scholar
  16. K. Suzuki, B. Murtuza, N. Suzuki, R. T. Smolenski, and M. H. Yacoub, “Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure,” Circulation, vol. 104, no. 12, supplement 1, pp. i213–i217, 2001. View at Google Scholar · View at Scopus
  17. N. Zhao, Y. Y. Liu, F. Wang et al., “Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats,” American Journal of Physiology, vol. 298, no. 4, pp. H1166–H1176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Ganguly, K. Schram, X. Fang et al., “Adiponectin increases LPL activity via RhoA/ROCK-mediated actin remodelling in adult rat cardiomyocytes,” Endocrinology, vol. 152, no. 1, pp. 247–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Teraoka, M. Hirano, K. Yamaguchi, and A. Yamashina, “Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats,” European Journal of Heart Failure, vol. 2, no. 4, pp. 373–378, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. P. M. Barger and D. P. Kelly, “Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms,” American Journal of the Medical Sciences, vol. 318, no. 1, pp. 36–42, 1999. View at Google Scholar · View at Scopus
  21. J. J. Lehman and D. P. Kelly, “Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart,” Clinical and Experimental Pharmacology and Physiology, vol. 29, no. 4, pp. 339–345, 2002. View at Google Scholar
  22. Z. Arany, M. Novikov, S. Chin, Y. Ma, A. Rosenzweig, and B. M. Spiegelman, “Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 10086–10091, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. S. Han and O. Ogut, “Regulation of fibre contraction in a rat model of myocardial ischemia,” PLoS One, vol. 5, no. 3, Article ID e9528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Kuhne, M. Besselmann, T. Noll, A. Muhs, H. Watanabe, and H. M. Piper, “Disintegration of cytoskeletal structure of actin filaments in energy- depleted endothelial cells,” American Journal of Physiology, vol. 264, no. 5, part 2, pp. H1599–H1608, 1993. View at Google Scholar · View at Scopus