Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013 (2013), Article ID 496036, 9 pages
http://dx.doi.org/10.1155/2013/496036
Research Article

Effects of “Bu Shen Huo Xue Decoction” on the Endometrial Morphology and Expression of Leukaemia Inhibitory Factor in the Rat Uterus during the Oestrous Cycle

1Reproductive Endocrinology Centre, Dongfang Hospital of Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1 Qu, Fengtai District, Beijing 100078, China
2Dongzhimen Hospital of Beijing University of Chinese Medicine, No. 5 Haiyuncang, Beijing 100700, China

Received 15 February 2013; Revised 27 March 2013; Accepted 7 April 2013

Academic Editor: Chris J. Branford-White

Copyright © 2013 Xin Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. P. Ferraretti, V. Goossens, J. de Mouzon et al., “Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE,” Human Reproduction, vol. 27, no. 9, pp. 2571–2584, 2012. View at Publisher · View at Google Scholar
  2. F. W. Bazer, G. Wu, T. E. Spencer et al., “Novel pathways for implantation and establishment and maintenance of pregnancy in mammals,” Molecular Human Reproduction, vol. 16, no. 3, pp. 135–152, 2010. View at Publisher · View at Google Scholar
  3. H. Cakmak and H. S. Taylor, “Implantation failure: molecular mechanisms and clinical treatment,” Human Reproduction Update, vol. 17, no. 2, Article ID dmq037, pp. 242–253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. C. J. M. Fauser and P. Devroey, “Reproductive biology and IVF: ovarian stimulation and luteal phase consequences,” Trends in Endocrinology and Metabolism, vol. 14, no. 5, pp. 236–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. G. Papanikolaou, C. Bourgain, E. Kolibianakis, H. Tournaye, and P. Devroey, “Steroid receptor expression in late follicular phase endometrium in GnRH antagonist IVF cycles is already altered, indicating initiation of early luteal phase transformation in the absence of secretory changes,” Human Reproduction, vol. 20, no. 6, pp. 1541–1547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. L. Carlone and V. Rider, “Embryonic modulation of basic fibroblast growth factor in the rat uterus,” Biology of Reproduction, vol. 49, no. 4, pp. 653–665, 1993. View at Google Scholar · View at Scopus
  7. V. Rider and A. Psychoyos, “Inhibition of progesterone receptor function results in loss of basic fibroblast growth factor expression and stromal cell proliferation during uterine remodelling in the pregnant rat,” Journal of Endocrinology, vol. 140, no. 2, pp. 239–249, 1994. View at Google Scholar · View at Scopus
  8. S. K. Das, K. C. Flanders, G. K. Andrews, and S. K. Dey, “Expression of transforming growth factor-β isoforms (β2 and β3) in the mouse uterus: analysis of the periimplantation period and effects of ovarian steroids,” Endocrinology, vol. 130, no. 6, pp. 3459–3466, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Red-Horse, P. M. Drake, and S. J. Fisher, “Human pregnancy: the role of chemokine networks at the fetal-maternal interface,” Expert Reviews in Molecular Medicine, vol. 6, no. 11, pp. 1–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Charnock-Jones, P. Kaufmann, and T. M. Mayhew, “Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation,” Placenta, vol. 25, no. 2-3, pp. 103–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Kaufmann, T. M. Mayhew, and D. S. Charnock-Jones, “Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy,” Placenta, vol. 25, no. 2-3, pp. 114–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. M. Mayhew, D. S. Charnock-Jones, and P. Kaufmann, “Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies,” Placenta, vol. 25, no. 2-3, pp. 127–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Yu, Y. Tong, H. F. Kwok et al., “Anti-angiogenic activity of erxian decoction, a traditional Chinese herbal formula, in zebrafish,” Biological and Pharmaceutical Bulletin, vol. 35, no. 12, pp. 2119–2127, 2012. View at Google Scholar
  14. P. A. W. Rogers, F. Martinez, J. E. Girling et al., “Influence of different hormonal regimens on endometrial microvascular density and VEGF expression in women suffering from breakthrough bleeding,” Human Reproduction, vol. 20, no. 12, pp. 3341–3347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Arici, O. Engin, E. Attar, and D. L. Olive, “Modulation of leukemia inhibitory factor gene expression and protein biosynthesis in human endometrium,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 6, pp. 1908–1915, 1995. View at Google Scholar · View at Scopus
  16. B. A. Lessey, A. J. Castelbaum, C. A. Buck, Y. Lei, C. W. Yowell, and J. Sun, “Further characterization of endometrial integrins during the menstrual cycle and in pregnancy,” Fertility and Sterility, vol. 62, no. 3, pp. 497–506, 1994. View at Google Scholar · View at Scopus
  17. H. D. Tsai, C. C. Chang, Y. Y. Hsieh, and H. Y. Lo, “Leukemia inhibitory factor expression in different endometrial locations between fertile and infertile women throughout different menstrual phases,” Journal of Assisted Reproduction and Genetics, vol. 17, no. 8, pp. 415–418, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Laird, E. M. Tuckerman, C. F. Dalton, B. C. Dunphy, T. C. Li, and X. Zhang, “The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture,” Human Reproduction, vol. 12, no. 3, pp. 569–574, 1997. View at Google Scholar · View at Scopus
  19. P. Paiva, E. Menkhorst, L. Salamonsen, and E. Dimitriadis, “Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy,” Cytokine and Growth Factor Reviews, vol. 20, no. 4, pp. 319–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. L. Stewart, P. Kaspar, L. J. Brunet et al., “Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor,” Nature, vol. 359, no. 6390, pp. 76–79, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Seli, U. A. Kayisli, H. Cakmak et al., “Removal of hydrosalpinges increases endometrial leukaemia inhibitory factor (LIF) expression at the time of the implantation window,” Human Reproduction, vol. 20, no. 11, pp. 3012–3017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Tassell, M. Slater, J. A. Barden, and C. R. Murphy, “Endometrial cell death during early pregnancy in the rat,” Histochemical Journal, vol. 32, no. 6, pp. 373–379, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Achache and A. Revel, “Endometrial receptivity markers, the journey to successful embryo implantation,” Human Reproduction Update, vol. 12, no. 6, pp. 731–746, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. A. Lessey, L. Damjanovich, C. Coutifaris, A. Castelbaum, S. M. Albeida, and C. A. Buck, “Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle,” Journal of Clinical Investigation, vol. 90, no. 1, pp. 188–195, 1992. View at Google Scholar · View at Scopus
  25. C. Simon, J. C. Martin, and A. Pellicer, “Paracrine regulators of implantation,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 14, no. 5, pp. 815–826, 2000. View at Publisher · View at Google Scholar
  26. J. A. Horcajadas, A. Riesewijk, J. Polman et al., “Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles,” Molecular Human Reproduction, vol. 11, no. 3, pp. 195–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mirkin, G. Nikas, J. G. Hsiu, J. Díaz, and S. Oehninger, “Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5742–5752, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Martínez-Conejero, C. Simón, A. Pellicer, and J. A. Horcajadas, “Is ovarian stimulation detrimental to the endometrium?” Reproductive Biomedicine Online, vol. 15, no. 1, pp. 45–50, 2007. View at Google Scholar · View at Scopus
  29. A. N. Andersen, L. Gianaroli, R. Felberbaum et al., “Assisted reproductive technology in Europe, 2001. Results generated from European registers by ESHRE,” Human Reproduction, vol. 20, no. 5, pp. 1158–1176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. de los Santos, A. Mercader, A. Galán, C. Albert, J. L. Romero, and A. Pellicer, “Implantation rates after two, three, or five days of embryo culture,” Placenta, vol. 24, pp. S13–S19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Murray, W. R. Meyer, R. J. Zaino et al., “A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women,” Fertility and Sterility, vol. 81, no. 5, pp. 1333–1343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Zhang, C. H. Chen, E. Confino, R. Barnes, M. Milad, and R. R. Kazer, “Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer,” Fertility and Sterility, vol. 83, no. 2, pp. 336–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Noyes, H. C. Liu, K. Sultan, G. Schattman, and Z. Rosenwaks, “Endometrial thickness appears to be a significant factor in embryo implantation in in-vitro fertilization,” Human Reproduction, vol. 10, no. 4, pp. 919–922, 1995. View at Google Scholar · View at Scopus
  34. P. Sundström, “Establishment of a successful pregnancy following in-vitro fertilization with an endometrial thickness of no more than 4 mm,” Human Reproduction, vol. 13, no. 6, pp. 1550–1552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Check, C. Dietterich, M. L. Check, and Y. Katz, “Successful delivery despite conception with a maximal endometrial thickness of 4 mm,” Clinical and Experimental Obstetrics and Gynecology, vol. 30, no. 2-3, pp. 93–94, 2003. View at Google Scholar · View at Scopus
  36. C. Siristatidis, C. Nissotakis, C. Chrelias, H. Iacovidou, and E. Salamalekis, “Immunological factors and their role in the genesis and development of endometriosis,” Journal of Obstetrics and Gynaecology Research, vol. 32, no. 2, pp. 162–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. J. Barker, “Developmental origins of adult health and disease,” Journal of Epidemiology and Community Health, vol. 58, no. 2, pp. 114–115, 2004. View at Publisher · View at Google Scholar
  38. E. R. Norwitz, “Defective implantation and placentation: laying the blueprint for pregnancy complications,” Reproductive Biomedicine Online, vol. 14, no. 1, pp. 101–109, 2007. View at Google Scholar
  39. H. Bhatt, L. J. Brunet, and C. L. Stewart, “Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11408–11412, 1991. View at Google Scholar · View at Scopus
  40. Z. M. Yang, S. P. Le, D. B. Chen et al., “Leukemia inhibitory factor, LIF receptor, and gp130 in the mouse uterus during early pregnancy,” Molecular Reproduction and Development, vol. 42, no. 4, pp. 407–414, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Wang, G. B. Zhou, P. Liu et al., “Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4826–4831, 2008. View at Publisher · View at Google Scholar · View at Scopus