Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 506324, 13 pages
http://dx.doi.org/10.1155/2013/506324
Research Article

Decursin and Doxorubicin Are in Synergy for the Induction of Apoptosis via STAT3 and/or mTOR Pathways in Human Multiple Myeloma Cells

1Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 131-701, Republic of Korea
2Basic Herbal Research Group, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
3Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea

Received 5 September 2012; Revised 16 March 2013; Accepted 1 April 2013

Academic Editor: Cheppail Ramachandran

Copyright © 2013 Jinsil Jang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Feinman, J. Koury, M. Thames, B. Barlogie, J. Epstein, and D. S. Siegel, “Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2,” Blood, vol. 93, no. 9, pp. 3044–3052, 1999. View at Google Scholar · View at Scopus
  2. H. Brenner, A. Gondos, and D. Pulte, “Recent major improvement in long-term survival of younger patients with multiple myeloma,” Blood, vol. 111, no. 5, pp. 2521–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Haematology, UmfBCfSi, “Diagnosis and management of multiple myeloma,” The British Journal of Haematology, vol. 115, no. 3, pp. 522–540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Hideshima, C. Mitsiades, G. Tonon, P. G. Richardson, and K. C. Anderson, “Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets,” Nature Reviews Cancer, vol. 7, no. 8, pp. 585–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. V. Rajkumar, R. Fonseca, A. Dispenzieri et al., “Thalidomide in the treatment of relapsed multiple myeloma,” Mayo Clinic Proceedings, vol. 75, no. 9, pp. 897–901, 2000. View at Google Scholar · View at Scopus
  6. P. G. Richardson, B. Barlogie, J. Berenson et al., “A phase 2 study of Bortezomib in relapsed, refractory myeloma,” The New England Journal of Medicine, vol. 348, no. 26, pp. 2609–2617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. P. G. Richardson, E. Blood, C. S. Mitsiades et al., “A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma,” Blood, vol. 108, no. 10, pp. 3458–3464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Stein, M. R. Smith, S. Chen, M. Zalath, and D. M. Goldenberg, “Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines,” Clinical Cancer Research, vol. 15, no. 8, pp. 2808–2817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Chauhan, L. Catley, T. Hideshima et al., “2-methoxyestradiol overcomes drug resistance in multiple myeloma cells,” Blood, vol. 100, no. 6, pp. 2187–2194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Sanchez, M. Li, J. A. Steinberg et al., “The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan,” The British Journal of Haematology, vol. 148, no. 4, pp. 569–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Chi and H. S. Kim, “Studies on the components of Umbelliferae plants in Korea: pharmacological study of decursin, decursinol and nodakenin,” Korean Journal of Pharmacognosy, vol. 1, pp. 25–32, 1970. View at Google Scholar
  12. Q. Ahn, S. J. Jeong, H. J. Lee et al., “Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells,” Cancer Letters, vol. 298, no. 2, pp. 212–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. J. Kim, S. J. Lee, Y. D. Choi, and S. K. Moon, “Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation,” International Journal of Molecular Medicine, vol. 25, no. 4, pp. 635–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Y. Song, J. H. Lee, M. Cho, B. S. Park, D. E. Kim, and S. Oh, “Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of β-catenin,” Molecular Pharmacology, vol. 72, no. 6, pp. 1599–1606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Kim, S. J. Jeong, H. Y. Kwon et al., “Decursin prevents cisplatin-induced apoptosis via the enhancement of antioxidant enzymes in human renal epithelial cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 8, pp. 1279–1284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Li, W. Li, S. W. Jung, Y. W. Lee, and Y. H. Kim, “Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes,” Bioscience, Biotechnology and Biochemistry, vol. 75, no. 3, pp. 434–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. J. Kim, S. M. Kim, K. R. Park et al., “Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway,” Cancer Letters, vol. 301, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Hosoi, M. B. Dilling, T. Shikata et al., “Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells,” Cancer Research, vol. 59, no. 4, pp. 886–894, 1999. View at Google Scholar · View at Scopus
  19. A. R. Tee and C. G. Proud, “Staurosporine inhibits phosphorylation of translational regulators linked to mTOR,” Cell Death and Differentiation, vol. 8, no. 8, pp. 841–849, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Li, R. Wang, R. Zhai, and Z. Dong, “Targeted inhibition of mammalian target of rapamycin (mTOR) signaling pathway inhibits proliferation and induces apoptosis of laryngeal carcinoma cells in vitro,” Tumori, vol. 97, no. 6, pp. 781–786, 2011. View at Publisher · View at Google Scholar
  21. C. Jiang, H. J. Lee, G. X. Li et al., “Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer,” Cancer Research, vol. 66, no. 1, pp. 453–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Lee, Y. S. Lee, S. H. Jung, K. H. Shin, B. K. Kim, and S. S. Kang, “Anti-tumor activities of decursinol angelate and decursin from Angelica gigas,” Archives of Pharmacal Research, vol. 26, no. 9, pp. 727–730, 2003. View at Google Scholar · View at Scopus
  23. K. Nilsson, H. Bennich, S. G. Johansson, and J. Pontén, “Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient,” Clinical and Experimental Immunology, vol. 7, no. 4, pp. 477–489, 1970. View at Google Scholar · View at Scopus
  24. S. Greenstein, N. L. Krett, Y. Kurosawa et al., “Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells,” Experimental Hematology, vol. 31, no. 4, pp. 271–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zhao, J. L. Au, and M. G. Wientjes, “Comparison of methods for evaluating drug-drug interaction,” Frontiers in Bioscience (Elite edition), vol. 2, pp. 241–249, 2010. View at Google Scholar · View at Scopus
  26. M. Herrmann, H. M. Lorenz, R. Voll, M. Grunke, W. Woith, and J. R. Kalden, “A rapid and simple method for the isolation of apoptotic DNA fragments,” Nucleic Acids Research, vol. 22, no. 24, pp. 5506–5507, 1994. View at Google Scholar · View at Scopus
  27. M. Mancini, B. O. Anderson, E. Caldwell, M. Sedghinasab, P. B. Paty, and D. M. Hockenbery, “Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line,” Journal of Cell Biology, vol. 138, no. 2, pp. 449–469, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Pradelli, M. Bénéteau, and J. E. Ricci, “Mitochondrial control of caspase-dependent and -independent cell death,” Cellular and Molecular Life Sciences, vol. 67, no. 10, pp. 1589–1597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. J. Schreiner, A. P. Schiavone, and T. E. Smithgall, “Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain,” The Journal of Biological Chemistry, vol. 277, no. 47, pp. 45680–45687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Buettner, L. B. Mora, and R. Jove, “Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention,” Clinical Cancer Research, vol. 8, no. 4, pp. 945–954, 2002. View at Google Scholar · View at Scopus
  31. W. S. Dalton, T. M. Grogan, P. S. Meltzer et al., “Drug-resistance in multiple myeloma and non-Hodgkin's lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy,” Journal of Clinical Oncology, vol. 7, no. 4, pp. 415–424, 1989. View at Google Scholar · View at Scopus
  32. J. A. Endicott and V. Ling, “The biochemistry of P-glycoprotein-mediated multidrug resistance,” Annual Review of Biochemistry, vol. 58, pp. 137–171, 1989. View at Google Scholar · View at Scopus
  33. M. R. Abbaszadegan, B. W. Futscher, W. T. Klimecki, A. List, and W. S. Dalton, “Analysis of multidrug resistance-associated protein (MRP) messenger RNA in normal and malignant hematopoietic cells,” Cancer Research, vol. 54, no. 17, pp. 4676–4679, 1994. View at Google Scholar · View at Scopus
  34. R. Schmidmaier, K. Mörsdorf, P. Baumann, B. Emmerich, and G. Meinhardt, “Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo,” International Journal of Biological Markers, vol. 21, no. 4, pp. 218–222, 2006. View at Google Scholar · View at Scopus
  35. W. R. Sellers and D. E. Fisher, “Apoptosis and cancer drug targeting,” Journal of Clinical Investigation, vol. 104, no. 12, pp. 1655–1661, 1999. View at Google Scholar · View at Scopus
  36. R. Alexanian, B. Barlogie, and S. Tucker, “VAD-based regimens as primary treatment for multiple myeloma,” The American Journal of Hematology, vol. 33, no. 2, pp. 86–89, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Koskela, T. T. Pelliniemi, and K. Remes, “VAD regimen in the treatment of resistant multiple myeloma: slow or fast infusion?” Leukemia and Lymphoma, vol. 10, no. 4-5, pp. 347–351, 1993. View at Google Scholar · View at Scopus
  38. W. Stenzinger, A. Blomker, W. Hiddemann, and J. van de Loo, “Treatment of refractory multiple myeloma with the vincristine-adriamycin-dexamethasone (VAD) regimen,” Blut, vol. 61, no. 2-3, pp. 55–59, 1990. View at Google Scholar · View at Scopus
  39. A. Bhardwaj, G. Sethi, S. Vadhan-Raj et al., “Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-κB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells,” Blood, vol. 109, no. 6, pp. 2293–2302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Bhutani, A. K. Pathak, A. S. Nair et al., “Capsaicin is a novel blocker of constitutive and interleukin-6—inducible STAT3 activation,” Clinical Cancer Research, vol. 13, no. 10, pp. 3024–3032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. R. Stennicke and G. S. Salvesen, “Properties of the caspases,” Biochimica et Biophysica Acta, vol. 1387, no. 1-2, pp. 17–31, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. O. Hengartner, “The biochemistry of apoptosis,” Nature, vol. 407, no. 6805, pp. 770–776, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Shuai, G. R. Stark, I. M. Kerr, and J. E. Darnell Jr., “A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ,” Science, vol. 261, no. 5129, pp. 1744–1746, 1993. View at Google Scholar · View at Scopus
  44. B. B. Aggarwal, G. Sethi, S. A. Kwang et al., “Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution,” Annals of the New York Academy of Sciences, vol. 1091, pp. 151–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. A. Kwang, G. Sethi, B. Sung, A. Goel, R. Ralhan, and B. B. Aggarwal, “Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1,” Cancer Research, vol. 68, no. 11, pp. 4406–4415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. K. Pandey, S. Bokyung, S. A. Kwang, and B. B. Aggarwal, “Butein suppresses constitutive and inducible signal transducer and activator of transcription (stat) 3 activation and stat3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1,” Molecular Pharmacology, vol. 75, no. 3, pp. 525–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B. B. Aggarwal, S. Shishodia, S. K. Sandur, M. K. Pandey, and G. Sethi, “Inflammation and cancer: how hot is the link?” Biochemical Pharmacology, vol. 72, no. 11, pp. 1605–1621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Xu and C. K. Qu, “Protein tyrosine phosphatases in the JAK/STAT pathway,” Frontiers in Bioscience, vol. 13, no. 13, pp. 4925–4932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Chan, S. A. Johnson, Y. Li, M. C. Yoder, and G. S. Feng, “A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis,” Blood, vol. 102, no. 6, pp. 2074–2080, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. R. J. Shaw and L. C. Cantley, “Ras, PI(3)K and mTOR signalling controls tumour cell growth,” Nature, vol. 441, no. 7092, pp. 424–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Cao, F. Kambe, M. Yamauchi, and H. Seo, “Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival,” Biochemical Journal, vol. 424, no. 2, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Gao, Z. Zhang, B. H. Jiang, and X. Shi, “Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer,” Biochemical and Biophysical Research Communications, vol. 310, no. 4, pp. 1124–1132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Wang, P. Yue, A. K. Young, H. Fu, F. R. Khuri, and S. Y. Sun, “Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation,” Cancer Research, vol. 68, no. 18, pp. 7409–7418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. C. Soria, F. A. Shepherd, J. Y. Douillard et al., “Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors,” Annals of Oncology, vol. 20, no. 10, pp. 1674–1681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. K. J. Pandya, S. Dahlberg, M. Hidalgo et al., “A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern cooperative oncology group (E1500),” Journal of Thoracic Oncology, vol. 2, no. 11, pp. 1036–1041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Hidalgo, J. C. Buckner, C. Erlichman et al., “A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer,” Clinical Cancer Research, vol. 12, no. 19, pp. 5755–5763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Carracedo, L. Ma, J. Teruya-Feldstein et al., “Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3065–3074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Zunino, R. Gambetta, and A. Di Marco, “The inhibition in vitro of DNA polymerase and RNA polymerases by daunomycin and adriamycin,” Biochemical Pharmacology, vol. 24, no. 2, pp. 309–311, 1975. View at Google Scholar · View at Scopus
  59. K. M. Tewey, T. C. Rowe, L. Yang, B. D. Halligan, and L. F. Liu, “Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II,” Science, vol. 226, no. 4673, pp. 466–468, 1984. View at Google Scholar · View at Scopus
  60. S. W. Wong, A. F. Wahl, P. M. Yuan et al., “Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases,” EMBO Journal, vol. 7, no. 1, pp. 37–47, 1988. View at Google Scholar · View at Scopus
  61. K. Sugimoto, K. Yamada, M. Egashira et al., “Temporal and spatial distribution of DNA topoisomerase II alters during proliferation, differentiation, and apoptosis in HL-60 cells,” Blood, vol. 91, no. 4, pp. 1407–1417, 1998. View at Google Scholar · View at Scopus
  62. E. Czeczuga-Semeniuk, S. Wołczyński, M. Dabrowska, J. Dziecioł, and T. Anchim, “The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells,” Folia Histochemica et Cytobiologica, vol. 42, no. 4, pp. 221–227, 2004. View at Google Scholar · View at Scopus
  63. T. Efferth, M. Giaisi, A. Merling, P. H. Krammer, and M. Li-Weber, “Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells,” PloS ONE, vol. 2, no. 1, article e693, 2007. View at Google Scholar · View at Scopus