Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 602834, 8 pages
http://dx.doi.org/10.1155/2013/602834
Research Article

Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD)

1Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
2Autism Research and Treatment Center, Shaik AL-Amodi Autism Research Chair, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia

Received 26 February 2013; Revised 14 June 2013; Accepted 24 June 2013

Academic Editor: Ronald Sherman

Copyright © 2013 Laila Y. AL-Ayadhi and Nadra Elyass Elamin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lord, E. H. Cook, B. L. Leventhal, and D. G. Amaral, “Autism spectrum disorders,” Neuron, vol. 28, no. 2, pp. 355–363, 2000. View at Google Scholar · View at Scopus
  2. American Psychiatric Association, “Diagnostic and statistical manual of mental disorders,” Tech. Rep. DSM-IV-TR, American Psychiatric Association, Washington, DC, USA, 2000. View at Google Scholar
  3. N. Momeni, J. Bergquist, L. Brudin et al., “A novel blood-based biomarker for detection of autism spectrum disorders,” Translational Psychiatry, vol. 2, article e91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Veenstra-VanderWeele and E. H. Cook Jr., “Molecular genetics of autism spectrum disorder,” Molecular Psychiatry, vol. 9, no. 9, pp. 819–832, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Ashwood, P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I. Pessah, and J. Van de Water, “Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. 40–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Y. AL-Ayadhi and G. A. Mostafa, “A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children,” Journal of Neuroinflammation, vol. 9, article 54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. White, “Intestinal pathophysiology in autism,” Experimental Biology and Medicine, vol. 228, no. 6, pp. 639–649, 2003. View at Google Scholar · View at Scopus
  8. S. Bölte and F. Poustka, “The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation,” Child Psychiatry and Human Development, vol. 33, no. 2, pp. 165–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Baio, “Prevalence of Autism spectrum disorders—autism and developmental disabilities monitoring network, 14 Sites, United States, 2008,” Morbidity and Mortality Weekly Report, vol. 61, no. 3, pp. 1–19, 2012. View at Google Scholar · View at Scopus
  10. Y. Al-Gadani, A. El-Ansary, O. Attas, and L. Al-Ayadhi, “Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children,” Clinical Biochemistry, vol. 42, no. 10-11, pp. 1032–1040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Schopler, R. J. Reichler, and B. R. Renner, “The childhood autism rating scale,” Western Psychology Services, Los Angeles, Calif, USA.
  12. P. Castelloe and G. Dawson, “Subclassification of children with autism and pervasive developmental disorder: a questionnaire based on Wing's subgrouping scheme,” Journal of Autism and Developmental Disorders, vol. 23, no. 2, pp. 229–242, 1993. View at Google Scholar · View at Scopus
  13. A. Chauhan, V. Chauhan, W. T. Brown, and I. Cohen, “Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins,” Life Sciences, vol. 75, no. 21, pp. 2539–2549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Christen, “Oxidative stress and Alzheimer disease,” American Journal of Clinical Nutrition, vol. 71, no. 2, pp. 621s–629s, 2000. View at Google Scholar · View at Scopus
  15. K. Kannan and S. K. Jain, “Oxidative stress and apoptosis,” Pathophysiology, vol. 7, no. 3, pp. 153–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Bostantjopoulou, G. Kyriazis, Z. Katsarou, G. Kiosseoglou, A. Kazis, and G. Mentenopoulos, “Superoxide dismutase activity in early and advanced Parkinson's disease,” Functional Neurology, vol. 12, no. 2, pp. 63–68, 1997. View at Google Scholar · View at Scopus
  17. Ö. Akyol, H. Herken, E. Uz et al., “The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: the possible role of oxidant/antioxidant imbalance,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 26, no. 5, pp. 995–1005, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Andreazza, M. Kauer-Sant'Anna, B. N. Frey et al., “Oxidative stress markers in bipolar disorder: a meta-analysis,” Journal of Affective Disorders, vol. 111, no. 2-3, pp. 135–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Shohami, E. Beit-Yannai, M. Horowitz, and R. Kohen, “Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome,” Journal of Cerebral Blood Flow and Metabolism, vol. 17, no. 10, pp. 1007–1019, 1997. View at Google Scholar · View at Scopus
  20. A. El-Ansary, S. Al-Daihan, A. Al-Dbass, and L. Al-Ayadhi, “Measurement of selected ions related to oxidative stress and energy metabolism in Saudi autistic children,” Clinical Biochemistry, vol. 43, no. 1-2, pp. 63–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. S. Zoroglu, F. Armutcu, S. Ozen et al., “Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism,” European Archives of Psychiatry and Clinical Neuroscience, vol. 254, no. 3, pp. 143–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Russo, “Decreased serum Cu/Zn SOD in children with autism,” Nutrition and Metabolic Insights, vol. 2, pp. 27–35, 2009. View at Google Scholar
  23. N. A. Meguid, A. A. Dardir, E. R. Abdel-Raouf, and A. Hashish, “Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation,” Biological Trace Element Research, vol. 143, no. 1, pp. 58–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. A. Al-Yafee, L. Y. Al-Ayadhi, S. H. Haq, and A. K. El-Ansary, “Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia,” BMC Neurology, vol. 11, article 139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. O. A. Al-Mosalem, A. El-Ansary, O. Attas, and L. Al-Ayadhi, “Metabolic biomarkers related to energy metabolism in Saudi autistic children,” Clinical Biochemistry, vol. 42, no. 10-11, pp. 949–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. R. McGinnis, “Oxidative stress in autism,” Integrative Medicine, vol. 3, no. 6, pp. 42–57, 2005. View at Google Scholar
  27. R. P. Agrawal, R. Beniwal, D. K. Kochar et al., “Camel milk as an adjunct to insulin therapy improves long-term glycemic control and reduction in doses of insulin in patients with type-1 diabetes: a 1 year randomized controlled trial,” Diabetes Research and Clinical Practice, vol. 68, no. 2, pp. 176–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Agrawal, S. Jain, S. Shah, A. Chopra, and V. Agarwal, “Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial,” European Journal of Clinical Nutrition, vol. 65, no. 9, pp. 1048–1052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Saltanat, H. Li, Y. Xu, J. Wang, F. Liu, and X.-H. Geng, “The influences of camel milk on the immune response of chronic hepatitis B patients,” Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, vol. 25, no. 5, pp. 431–433, 2009. View at Google Scholar · View at Scopus
  30. Y. Shabo and R. Yagil, “Etiology of autism and camel milk as therapy,” Journal of Endocrine Genetics, vol. 4, no. 2, pp. 67–70, 2005. View at Google Scholar · View at Scopus
  31. R. Yagil, “Camel milk and autoimmune diseases: historical medicine,” 2004, http://www.camelmilkforhealth.com.
  32. H. E. Mohamed, H. M. Mousa, and A. C. Beynen, “Ascorbic acid concentrations in milk from Sudanese camels,” Journal of Animal Physiology and Animal Nutrition, vol. 89, no. 1-2, pp. 35–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. I. Al-Humaid, H. M. Mousa, R. A. El-Mergawi, and A. M. Abdel-Salam, “Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats,” American Journal of Food Technology, vol. 5, no. 1, pp. 22–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Shabo, R. Barzel, M. Margoulis, and R. Yagil, “Camel milk for food allergies in children,” Israel Medical Association Journal, vol. 7, no. 12, pp. 796–798, 2005. View at Google Scholar · View at Scopus
  35. S. Kappeler, Z. Farah, and Z. Puhan, “Sequence analysis of Camelus dromedarius milk caseins,” The Journal of Dairy Research, vol. 65, no. 2, pp. 209–222, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kappeler, Compositional and structural analysis of camel milk proteins with emphasis on protective proteins [Ph.D. thesis], Swiss Federal Institute of Technology, Zurich, Switzerland, 1998.
  37. O. Zafra, S. Fraile, C. Gutiérrez et al., “Monitoring biodegradative enzymes with nanobodies raised in Camelus dromedarius with mixtures of catabolic proteins,” Environmental Microbiology, vol. 13, no. 4, pp. 960–974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Rose, S. Melnyk, O. Pavliv et al., “Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain,” Transl Psychiatry, vol. 2, e134, 2012. View at Publisher · View at Google Scholar
  39. W. R. McGinnis, “Oxidative stress in autism,” Alternative Therapies in Health and Medicine, vol. 10, no. 6, pp. 22–36, 2004. View at Google Scholar · View at Scopus
  40. S. Söǧüt, S. S. Zoroǧlu, H. Özyurt et al., “Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism,” Clinica Chimica Acta, vol. 331, no. 1-2, pp. 111–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Yorbik, A. Sayal, C. Akay, D. I. Akbiyik, and T. Sohmen, “Investigation of antioxidant enzymes in children with autistic disorder,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 67, no. 5, pp. 341–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Knivsberg, K. L. Reichelt, N. Nodland, and T. Hoien, “Autistic syndromes and diet: a follow-up study,” Scandinavian Journal of Educational Research, vol. 39, pp. 223–236, 1995. View at Google Scholar
  43. A. M. Knivsberg, K. L. Reichelt, T. Høien, and M. Nødland, “A randomised, controlled study of dietary intervention in autistic syndromes,” Nutritional Neuroscience, vol. 5, no. 4, pp. 251–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Y. Al-Ayadhi and G. A. Mostafa, “Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children,” Journal of Neuroinflammation, vol. 10, article 72, no. 1, 2013. View at Google Scholar
  45. N. A. Al-wabel, A. Hassan, H. Abbas, and H. Muosa, “Antiulcerogenic effect of camel milk against ethanol induced gastric ulcers in rats,” WebmedCentral Veterinary Medicine, vol. 3, no. 3, Article ID WMC002804, 2012. View at Google Scholar
  46. L. Klevay, “Advances in cardiovascular-copper research,” in Proceedings of the 1st International Bio-Minerals Symposium: Trace Elements in Nutrition, Health and Disease, G. N. Schrauzer, Ed., Institute Rosell, Montreal, Canada, 2003.
  47. S. R. Powell, “The antioxidant properties of zinc,” Journal of Nutrition, vol. 130, no. 5, pp. 1447–1454, 2000. View at Google Scholar · View at Scopus
  48. S. Faber, G. M. Zinn, J. C. Kern II, and H. M. Skip Kingston, “The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders,” Biomarkers, vol. 14, no. 3, pp. 171–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. B. Kurutas, A. Cetinkaya, E. Bulbuloglu, and B. Kantarceken, “Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Zn-superoxide dismutase and plasma malondialdehyde levels in experimental colitis,” Mediators of Inflammation, vol. 2005, no. 6, pp. 390–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. P. S. Green, A. J. Mendez, J. S. Jacob et al., “Neuronal expression of myeloperoxidase is increased in Alzheimer's disease,” Journal of Neurochemistry, vol. 90, no. 3, pp. 724–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D.-K. Choi, S. Pennathur, C. Perier et al., “Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice,” Journal of Neuroscience, vol. 25, no. 28, pp. 6594–6600, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. R. M. Nagra, B. Becher, W. W. Tourtellotte et al., “Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis,” Journal of Neuroimmunology, vol. 78, no. 1-2, pp. 97–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. A. K. Anthony, J. Russo, B. Jepson, and A. Wakefield, “Low serum myeloperoxidase in autistic children with gastrointestinal disease,” Journal of Clinical and Experimental Gastroenterology, vol. 2, pp. 85–94, 2009. View at Google Scholar
  54. K. Horvath and J. A. Perman, “Autistic disorder and gastrointestinal disease,” Current Opinion in Pediatrics, vol. 14, no. 5, pp. 583–587, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Rahman, S. K. Biswas, L. A. Jimenez, M. Torres, and H. J. Forman, “Glutathione, stress responses, and redox signaling in lung inflammation,” Antioxidants and Redox Signaling, vol. 7, no. 1-2, pp. 42–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. El Heni, S. Sfar, F. Hammouda, M. T. Sfar, and A. Kerkeni, “Interrelationships between cadmium, zinc and antioxidants in the liver of the rat exposed orally to relatively high doses of cadmium and zinc,” Ecotoxicology and Environmental Safety, vol. 74, no. 7, pp. 2099–2104, 2011. View at Publisher · View at Google Scholar · View at Scopus